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 Within two hydrodynamically different inundation regimes in North Carolina, the 

growth response and interactions of two dominant marsh macrophytes were evaluated 

over a range of inundation periods to understand better how coastal marshes will respond 

to rising sea levels. Marsh vegetation is likely key to accretion processes. Greater 

aboveground biomass baffles floodwaters, potentially increasing sedimentation, and 

greater belowground biomass contributes directly to the elevation of marsh substrate. 

Multi-level planters were used to evaluate experimentally the response of Spartina 

alterniflora Loisel and Juncus roemerianus Scheele to an array of inundation periods. 

Groundcover changes were evaluated before and after a pulsed disturbance to simulate 

conditions where these species are naturally delineated on the marsh platform. Peak 

production of S. alterniflora and J. roemerianus occurred at inundation periods of 0.5 to 

14% and 0.4 to 28%, respectively, in marsh planters. The growth response patterns of S. 

alterniflora and J. roemerianus to inundation period were similar, although J. 

roemerianus appeared to experience greater stress in an astronomically-dominated than in 

a meteorologically-dominated inundation regime. Spartina alterniflora was found to be 

more resilient to disturbance than J. roemerianus in planters and on the marsh platform. 
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Sixteen months following a one-time cutting disturbance, a significant decline in J. 

roemerianus and encroachment of S. alterniflora in experimental platform plots was 

observed within both regimes. Estuarine inundation appears to function as both a subsidy 

and stressor to marsh macrophytes. I propose a conceptual model to describe this 

relationship.  

 The scaling of the losses and gains in marsh ecosystem services is reviewed 

within the context of coastal marsh habitat injury, restoration and creation as achieved by 

the Natural Resource Damage Assessment and compensatory restoration processes. An 

analysis into the current methods used to assess ecosystem services found that U.S. 

statutes provide for the compensation of loss of public trust resources, yet current metrics 

for ecosystem services serve as incomplete proxies of ecosystem function and condition.    

Coastal ecosystems have and will transgress in response to rising sea levels. Data from 

this investigation suggest that marsh accretion is challenged by increased inundation 

rates, especially where sediment supplies are limiting, thus, highlighting the need for 

accommodating transgression within the coastal zone.   
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Chapter 1. INTRODUCTION 

 

Overview 

 

 Accelerated rates of sea-level rise (SLR) are among the most important responses 

to global climate change phenomena affecting Earth‟s coastal zones. The IPCC (2007) 

estimates that eustatic sea level will rise 0.2-0.6 m by 2100.  Projections that are more 

recent conclude that the IPCC‟s estimate is likely too low and suggest that a rise of 0.5-

1.4 m (Rahmstorf 2007), 0.9-1.3 m (Grinsted et al. 2009) or even 0.8-2.0 m (Pfeffer et al. 

2008) are more likely by 2100.  All projections acknowledge the substantial uncertainties 

associated with glacial dynamics in Greenland and Antarctica, yet the agreement and 

degree of overlap in more recent estimates suggest these are the general conditions for 

which we should prepare.  Rising sea level has worldwide consequences because of its 

potential to alter ecosystems and even human occupation of coastal regions.  In the USA, 

approximately half of our nation‟s population is concentrated along the coastal zone 

(Crossett et al. 2004), and the range and magnitude of impacts resulting from sea-level 

rise are immense and unprecedented.  Because rising sea level is a relatively gradual 

process, proactive management strategies have the potential to determine significantly the 

viability and sustainability of coastal zone ecosystems.     

 The effects of accelerated rates of SLR are already apparent along much of the 

U.S. Atlantic and Gulf Coasts and may cause the dramatic modification of important 

coastal ecosystems and loss of some valuable ecosystem services over the next few 

decades (Kennish 2001, Scavia et al. 2002).  Estuarine shorelines are under the stress of 

increased water levels ranging from short-term waves and storm surge to long-term 
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inundation through increased rates of SLR.  In areas where shorelines or wetlands must 

migrate inland to persist, managers must be able to predict the effects of SLR to 

implement protection or retreat strategies to reduce the hazardous and negative economic 

impacts of inundation and shoreline movement.   

  Relative sea-level rise (RSLR) (eustacy, steric effects plus local and regional 

processes affecting elevation) continues to alter the North Carolina coast.  Regional 

assessments of sea-level trends in North Carolina have suggested the rate of rise was 4.3 

mm yr
-1

 for most of the 20
th

 century (Poulter 2005) and has ranged from 2.04 mm yr
-1

 at 

Southport to 4.27 mm yr
-1

 at Duck (Zervas 2004).  Recent work by Kemp et al. (pers. 

comm., 2009) estimated that RSLR rate in North Carolina was 0.98 mm yr
-1

 (±0.40 mm 

yr
-1

) from the period of 1000 B.C. to 1850 A.D. and dramatically increased since 1850 to 

4.74 mm yr
-1

  (±0.02 mm yr
-1

), based upon analyses of microfossils and carbon dating of 

peat cores.  These rates compare with a eustatic mean SLR rate of 1.8 mm yr
-1 

for the past 

century (Douglas 1997, Church and White 2006) and a recent mean rate of 3.1 mm yr
-1

 

from 1993-2003 (Bindoff et al. 2007).  Sea-level rise and the acceleration of SLR 

contribute to a suite of stressors currently impacting our coastal ecosystems.  Coastal 

marshes are among the ecologically and economically valuable ecosystems in jeopardy 

from accelerated SLR and anthropogenic coastal zone alterations; to date, these marshes 

have persisted through centuries of RSLR by processes such as vertical accretion and 

landward horizontal migration (transgression).   

 The coast of North Carolina encompasses marsh habitat with two distinctly 

different hydrologic regimes within practical geographical proximity.  Marshes that are 
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located near inlets along the eastern rim of the coastline and within sounds and estuaries 

well connected to the ocean experience astronomically-driven (semi-diurnal) tidal 

regimes.  Marshes positioned away from inlets or within the sounds and estuaries with 

restricted access to the ocean, such as along the western shore of the Pamlico Sound, 

experience meteorologically-driven (micro-tidal) hydrologic regimes with minimal 

astronomical tides.  These relatively unique geographic features provide an excellent 

opportunity for the study of the effects of the range of hydrologic regimes that marshes 

will experience along the U.S. Atlantic and Gulf Coasts due to RSLR.  Accelerated 

RSLR is expected to result in increased tidal amplitude and salinity in areas that are 

currently meso- and micro-tidally inundated; this may affect changes in plant community 

composition in the coastal wetlands.  Spartina alterniflora Loisel and Juncus 

roemerianus Scheele are the dominant macrophytes of tidal and irregularly flooded 

southeastern U.S. marshes, respectively (Mitsch and Gosselink 2000).   

 Marsh ecosystems may have evolved to be resilient to natural stressors; on 

smaller scales press (e.g., sea-level rise) and pulse (e.g., wrack deposition) disturbances 

(Bender et al. 1984) act to alter community structure and perhaps initiate changes in 

ecosystem state.  Ecosystem state change is a sequential transformation process whereby 

an ecosystem state, at a fixed geographic point, is transformed to another state or habitat 

type due to abiotic forces (Brinson et al. 1995, Hayden et al. 1995).  For example, as sea-

level rises in a coastal setting, upland forest is converted to high marsh, high marsh to 

low marsh and low marsh sub-tidal flat.  Ecogeomorhpological position influences 

community stability, as well as the nature of the subsidies and stressors experienced by a 
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given community within the larger ecosystem (Keusenkothen and Christian 2004).  

Among other effects, sea-level rise effectively increases the hydraulic head of the estuary 

and thus logically results in a decrease in upland and high marsh drainage (as per 

LaRoche and Webb 1987, Titus et al. 1987, Waddell and Blaycock 1987).  Consequently, 

this lack of drainage from high marsh areas can result in hydraulic isolation within marsh 

ecosystems in areas not influenced by tidal pumping.  Increasing water levels will 

gradually transform the hydrogeomorphic settings within marshes, promoting a shift in 

ecosystem state; however, transitions in state may be accelerated by pulse disturbances 

(Brinson et al. 1995).  While the response of coastal marshes to an increased rate of 

RSLR is uncertain, the societal need for marsh ecosystem goods and services is 

unending.  Hence, understanding the response of marsh ecosystems to RSLR is crucial 

for successful management of the coastal zone.   

 The ecological functions intrinsic to the world‟s ecosystems provide an array of 

services to humans (Daily et al. 1997, de Groot et al. 2002, MEA 2005, NRC 2005).  

Ecological services support the interrelated functions of natural communities and support 

many human enterprises and values (CESR 2008).  The contributions of these services 

are often undervalued and are not fully recognized until ecosystem condition or function 

is reduced or eliminated. Consequently, environmental insults to public natural resources 

and the ecosystems they support were long accepted without requiring compensation.  In 

the United States, numerous federal policies and legislative acts have recognized the 

wisdom of preserving critical ecosystem services provided by public trust resources and 

have established requirements for the compensation of environmental injuries.  For 
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example, the federal Clean Water Act (Section 404) requires that construction projects 

avoid, then minimize where unavoidable, and finally mitigate any remaining damage to 

wetlands.  The “no net loss” concept for wetlands was developed by the National 

Wetlands Policy Forum (published in 1988), a stakeholder panel brought together by the 

Conservation Foundation, with the short-term goal of no net loss and a long-term goal of 

a net gain in US wetland area, function and value.  Coastal marshes are valued, protected, 

and restored in recognition of the comprehensive suite of their ecosystem services: (1) 

high productivity and habitat provision supporting the foodweb leading to fish and 

wildlife (Teal 1962, Weisberg and Lotrich 1982, Boesch and Turner 1984, Peterson and 

Turner 1994, Minello et al. 2003), (2) buffer against storm wave damage (Mitsch and 

Gosselink 2000), (3) shoreline stabilization (NCDCM 2006), (4) flood water storage 

(Mitsch and Gosselink 2000), (5) water quality maintenance (Stone et al. 1990, Correll et 

al. 1992), (6) biodiversity preservation (Keer and Zedler 2002; Callaway et al. 2003), (7) 

carbon storage and biogeochemical cycling (Mitsch and Gosselink 2000, Chmura et al. 

2003, Brevik and Homburg 2004, Choi and Wang 2004) and (8) socio-economic benefits 

(Mitsch and Gosselink 2000, MEA 2005).  Sustaining ecosystem function and condition 

allows ecosystem services to perpetuate across space and time to benefit humans both 

directly and indirectly.  Natural processes and anthropogenic actions that reduce function 

or condition, reduce the level of goods and services available to societies.  Coastal policy 

can address the natural geomorphological evolution and manage social exploitation of 

ecosystems with the goal of sustainability.  The authority to seek compensation for 

natural resource damages under federal and state statutes has led to new fields of study 
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such as restoration ecology.  Resource managers throughout the country, and increasingly 

throughout the world, rely on a wide selection of methods to determine the appropriate 

quantity and type of restoration to compensate for perturbations to ecological resources 

and systems.  Methods to “scale” (measure and balance) restoration actions to equate to 

the interim loss of injured public trust resources combine techniques from the fields of 

ecology and economics.  Determining just restoration measures and public compensation 

for resource injuries necessitates a sound knowledge of ecosystem function and condition 

as well as an improved understanding of the flow of services to societies.   

  The research on which this dissertation was funded largely by a grant from the 

National Centers for Coastal Ocean Science‟s Center for Sponsored Coastal Ocean 

Research, part of the National Oceanic and Atmospheric Administration‟s National 

Ocean Service (NOAA) (Grant # FNA05NOS4781184).  The basic research within this 

dissertation contributes to mathematical models with the objective of understanding and 

predicting the ecological and morphological responses to sea-level rise.  Our research 

team is focused on the morphological evolution of coastal marshes in response to tidal 

forcing and sea-level rise.  This team included geologists from Vanderbilt University 

(David J. Furbish and Susan M. Howell) and the U.S. Geodetic Survey (Donald R. 

Cahoon) and ecologists from East Carolina University (Robert R. Christian) and the 

University of South Carolina (James T. Morris); Dr. Morris.  

 As part of the Coastal Resources Management program requirements, I served as 

team member on a project for the Coastal Response Research Center (CRRC), a 

partnership between NOAA and the University of New Hampshire.  Briefly, the CRRC is 



 7 

focused on developing new approaches to hazardous-material-spill response and 

restoration in marine and estuarine ecosystems through research and synthesis of 

information.  The result of our project was a book, Ecology and Economics of 

Restoration Scaling, which is a synthesis of restoration scaling methods used in coastal 

ecosystem damage response and restoration.  I was invited to join an ecologist, Dr. C. H. 

Peterson and an economist, Eric English, who have each had experience in the 

assessment, scaling, restorative planning necessitated by discrete ecosystem damage 

incidents, as they relate to the Comprehensive Environmental Response, Compensation, 

and Liability Act (CERCLA) and Oil Protection Act (OPA).  As a collaborator, I focused 

on aspects of damage assessment, scaling, and restoration of coastal habitats and the 

replacement of ecosystem services that are held in the public trust.  Details of this work, 

as it pertains to coastal marsh ecosystems, are discussed in chapter four.   

The main objectives of this dissertation are: 

1)  To determine the growth response (aboveground/belowground biomass and 

productivity) and tolerance limits of dominant marsh macrophytes to inundation 

period (Spartina alterniflora and Juncus roemerianus) and inundation regime 

(Juncus roemerianus only) 

2) To elucidate interactions between Spartina alterniflora and Juncus roemerianus with 

respect to inundation period and disturbance 

3) To review the scaling of the losses and gains in marsh ecosystem services within the 

context of the injury, restoration and creation of coastal marsh habitat as achieved 

in the Natural Resource Damage Assessment process. 
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Dissertation organization  

 This dissertation is structured with two summary chapters at the beginning (this 

introduction) and end (synthesis) that encase two chapters of original research prepared 

as manuscripts to be submitted as primary literature and a review chapter suitable for a 

coastal management journal.  Each of the core chapters is written to be published 

individually and is formatted for the target journal.  A brief summary of each chapter is 

given below. 

 In chapter 2, I investigate the growth response of two dominant marsh 

macrophytes, S. alterniflora and J. roemerianus, to inundation period within each of the 

two chief hydrodynamically different inundation regimes found in North Carolina.  

Spartina alterniflora and J. roemerianus are among the dominant macrophytes of tidal 

and brackish, irregularly flooded marshes, respectively, along the Mid-Atlantic, South 

Atlantic and Gulf Coasts (Eleuterius 1976, Mitsch and Gosselink 2000); coastal marshes 

in these regions comprise approximately 90 % of the U.S. total (NOAA 1990, Watzin and 

Gosselink 1992).  Morris et al. (2002) have demonstrated that the relative elevation, and 

thus, inundation period, of the sediment surface is a critically important variable that 

controls the productivity of the salt marsh vegetation, and that macrophyte productivity 

has a positive feedback on the rate of accretion of the marsh surface.  Hence, 

understanding of the response of marsh macrophytes to inundation is essential to the 

broader understanding of coastal wetland response to the higher water levels and tides 

associated with rising sea level, and for predicting changes in the geomorphology of the 

estuarine shoreline.  In this chapter, I employ the term “we” to include my intended co-
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authors, Dr. Robert R. Christian and Dr. James T. Morris, of a manuscript we plan to 

submit to Ecological Applications, a peer-reviewed journal of the Ecological Society of 

America. 

 In chapter 3, I explore the interrelationships of S. alterniflora and J. roemerianus 

over a range of inundation periods in each of distinct inundation regimes.  In this study, I 

focus on the species-level response at the J. roemerianus-S. alterniflora marsh interface 

to extrapolate how processes at the community level might offer insight into the 

transformation of a high marsh state to a low marsh state.  In addition, I explore the 

effects of disturbance on community structure along the J. roemerianus-S. alterniflora 

margin where an abrupt delineation of these dominant macrophytes occur.   

 In chapter 4, I review the methods employed for the assessment of coastal marsh 

ecosystem services that are commonly used in natural resource damage assessment and 

compensatory restoration cases.  Under US federal statutes, natural resource trustees are 

authorized to act on behalf of the public to protect the resources of the Nation‟s 

environment (NOAA 1997, Burlington 1999, NRC 2001).  Together, federal, state and 

sometimes local or tribal trustees of coastal and marine resources determine the damage 

claims to be filed against parties responsible for injuries to natural resources resulting 

from discharges of oil, releases of hazardous substance or physical injury such as vessel 

groundings.  The scaling of ecosystem services is a methodology for qualifying and 

quantifying ecosystem services for this purpose and draws on a variety of techniques 

from the fields of ecology and economics. Marsh ecosystems are recognized for 

providing a wealth of ecosystem services within the world‟s coastal zones (Boesch and 
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Scavia 2000, MEA 2005, Peterson et al. 2008).  The contributions of these services are 

often not fully recognized until ecosystem function is reduced or eliminated.  A key 

challenge to those responsible for the management of public trust resources is the scaling 

of the ecosystem services provided by these natural resources.  
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ABSTRACT  

  

 The growth response of two dominant marsh macrophytes was examined over a 

range of inundation periods to understand how coastal marshes will respond to rising sea 

levels.  Marsh vegetation is likely key to accretion processes. Greater aboveground 

biomass baffles floodwaters potentially increasing the degree of sedimentation; and 

greater belowground biomass contributes directly to the elevation of marsh substrate.  In 

North Carolina, multi-level planters were employed to evaluate experimentally the 

response of Spartina alterniflora Loisel and Juncus roemerianus Scheele to an array of 

inundation periods.  Significant trends of decreasing above- and below- ground growth 

with increasing inundation were observed across most response variables. Peak 

production of S. alterniflora and J. roemerianus occurred at inundation periods of 0.5 to 

14% and 0.4 to 28%, respectively, in marsh planters.  Essentially no seasonal increase in 

S. alterniflora or J. roemerianus biomass was observed at elevations inundated ≥ 67 % 

and ≥ 42 to 53 %, respectively. The growth response patterns of S. alterniflora and J. 

roemerianus to inundation period were similar; though, J. roemerianus appeared to 

experience greater stress in an astronomically-dominated than in a meteorologically-
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dominated inundation regime.  Estuarine inundation appears to function as both a subsidy 

and stressor to marsh macrophytes. We propose a conceptual model to describe this 

relationship.  
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INTRODUCTION 

  Coastal marshes are among the ecologically and economically valuable 

ecosystems in jeopardy from the acceleration of sea-level rise (SLR) (Scavia et al. 2002, 

IPCC 2007, Rahmstorf 2007, Peterson et al. 2008a); yet these wetlands have maintained 

elevation relative to sea level for millennia (Redfield 1965, 1972, Orson et al. 1987, Reed 

2002) through processes such as vertical accretion and horizontal transgression across the 

landscape.  Marsh accretion occurs through the mechanisms of sedimentation (from 

estuarine sources) (Leonard and Luther 1995, Leonard et al. 1995, Reed 2002) and 

bioaccretion (accumulated organic matter in marsh substrate) (Cahoon et al. 1998, Turner 

et al. 2000, Blum and Christian 2004, Nyman et al. 2006).  Ultimately, it is the intimate 

relationship of marsh surface elevation (relative to sea level), marsh hydrology (chiefly 

estuarine inundation) and macrophyte response that determines the persistence of marsh 

ecosystems.  Early models predicted that intertidal marshes approach an equilibrium 

elevation that approximates that of mean high water (MHW), suggesting that the quantity 

of sediment deposited on the marsh surface is proportional to the water depth inundating 

the marsh (Krone 1985).  Morris et al. (2002) have demonstrated that the relative 

elevation, and thus, inundation period, of the sediment surface is a critically important 

variable that controls the productivity of the salt marsh vegetation and that macrophyte 

productivity has a positive feedback on the rate of accretion of the marsh surface. Hence, 

understanding of the response of marsh macrophytes to inundation is essential to the 

broader understanding of coastal wetland response to the higher water levels and tides 
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associated with rising sea level, and for predicting changes in the geomorphology of the 

estuarine shoreline.  

 Spartina alterniflora Loisel and Juncus roemerianus Scheele comprise the 

dominant vegetation (Eleuterius 1976, Mitsch and Gosselink 2000) in 90% of U.S. 

coastal marshes (NOAA 1990, Watzin and Gosselink 1992) over a wide range of 

inundation regimes.  An increasing rate of relative SLR (RSLR), the cumulative effects 

of eustatic SLR, steric effects and local and regional processes affecting elevation, are 

expected to result in increased tidal amplitude and salinity in areas that are currently 

minimally or irregularly inundated (Pethick 1993, Rosenzweig et al. 2007).  This change 

in inundation regime will likely effect changes in community composition and is 

predicted to result in ecosystem state changes (Brinson et al. 1995) within the coastal 

zone.  Spartina alterniflora occurs along the lowest terrestrial elevation along estuarine 

shorelines, characteristically dominating the intertidal zone, and it decreases aboveground 

production and its ability to dominate at higher elevations where flooding is less regular 

(Bertness and Pennings 2000) and its elevational distribution increases with increasing 

mean tidal range (McKee and Patrick 1988).  Primary production for S. alterniflora 

varies with distance from shoreline across the marsh surface and production is usually 

greatest along the marsh-estuarine interface (Nixon and Oviatt 1973, Gallagher 1974, 

Broome et al. 1975, Turner 1976, Pomeroy et al. 1981, Howes et al. 1986), zones that 

typically receive greatest inundation.  Juncus roemerianus tends to dominate at slightly 

higher elevations under irregularly flooded conditions, but it can be found in areas of 

more regular flooding (Woerner and Hackney 1997, Brinson and Christian 1999).  In 
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Georgia salt marshes and transplant experiments, Pennings et al. (2005) showed that J. 

roemerianus was limited by physical stresses (flooding and salinity) at its seaward 

boundary and not by competition, whereas, S. alterniflora at its landward boundary was 

limited by competition with J. roemerianus.  In South Carolina, Morris and Haskin 

(1990) found that S. alterniflora primary production positively correlated with site-

specific mean sea level and rainfall.  Thus it appears that the growth response of S. 

alterniflora and J. roemerianus differ with inundation period (% time flooded) or 

inundation regime (flooding pattern, e.g., tidal or irregular), but direct comparative 

evidence is limited. 

 Numerous studies have investigated the effects of inundation on the production of 

S. alterniflora (Steever et al. 1976, Odum 1979, McKee and Patrick 1988, Morris et al. 

1990, Morris and Haskin 1990, Pennings et al. 2005); few have investigated the effects of 

inundation on the production of J. roemerianus (Stout 1978, Christian et al. 1990, 

Pennings et al. 2005).  Elevation largely determines edaphic conditions for marsh 

macrophytes and has been proposed to be a key determinant of macrophyte net primary 

production (Mendelssohn and Morris 2000, Morris 2007).  Most studies have been 

observational and based on in situ measurements.  One method developed to isolate, 

manipulate and evaluate the effect of inundation on marsh vegetation is the multi-level 

planter.  The multi-level planter utilized replicate PVC pipes positioned vertically as 

“pots” over generally a 1-m range in elevation.  Multi-level planters have been employed 

effectively to alter and expand the elevation (thus, the degree of inundation) at which 

marsh vegetation grows within a given marsh habitat, allowing one experimentally to 
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examine the growth response of marsh macrophytes over a range of elevations relative to 

mean sea level (Morris 2007).  Several investigations have attempted to elucidate the 

mechanisms that drive intra-marsh variability in the production and height of S. 

alterniflora.  While such research radiates along several lines of causality, we focus on 

the role of inundation and its subsequent effect on edaphic conditions.  Some studies have 

found S. alterniflora production to be positively correlated with elevation such as on 

berms near tidal creeks (Gallagher 1980, Pomeroy et al. 1981), while others have found it 

to be positively correlated to inundation (Morris and Haskin 1990, Morris et al. 2002).   

 The objective of this study was to determine the growth response of the two key 

dominant marsh macrophytes (S. alterniflora and J. roemerianus) to a range of 

inundation periods, to determine their inundation tolerance and to distinguish differences 

in the growth response of J. roemerianus with inundation regime.  Because S. alterniflora 

and J. roemerianus dominance is sometimes associated with the regularity of inundation 

pattern, planters containing J. roemerianus were deployed at two geographically-

proximal marsh sites that experience different inundation regimes, one of which 

experiences a semi-diurnal, astronomically-dominated inundation pattern and one that 

experiences an irregular, meteorologically-dominated inundation pattern. We know of no 

other studies to employ inundation regime as a variable to explain macrophyte growth 

response. Based upon the current body of knowledge, one would expect overlap in the 

growth response of dominant macrophyte species to inundation  period.  We 

hypothesized that Spartina would show more vigorous growth than Juncus at most-

inundated elevations, and that Juncus would show more vigorous growth under a 
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meteorologically-dominated inundation regime than under an astronomically-dominated 

inundation regime, given similar inundation periods.   
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METHODS 

Site Description 

 The North Carolina (NC) coast of the U.S.A. is classified as a micro–tidal system 

with a tidal range of ~ 1.0 m along the ocean shoreline and inlets, decreasing to a 

negligible (< 10 cm) astronomical tidal signal along the landward areas of its large 

sounds which occur in the northern province of the state (Currituck, Roanoke, Albemarle 

and Pamlico Sounds).  The sounds in NC‟s southern province (e.g. Back, Bogue, Topsail, 

Middle, Masonboro, etc.) are significantly smaller with more numerous inlets that 

provide great connectivity to the Atlantic Ocean and are thus dominated by astronomical 

forces.  Overall, the influence of meteorological factors dominates where astronomical 

influence diminishes (Mukai et al. 2002).    

 Research sites were established along the central NC coast at two points that 

differed in hydrodynamic regime.  One site was chosen in the southern province at Pine 

Knoll Shores (PKS) (33.6953N, 76.8417W) and one in the northern province at Lola 

(LOLA) (34.9501N, 76.2796W); sites were spaced approximately 50 km apart and 

experienced similar meteorological conditions (Figure 2.1).  The astronomical tidal range 

was measured as 60 cm and 8 cm for PKS and LOLA, respectively.  The dominance of 

the astronomical tidal signal at PKS is responsible for a regular, semi-diurnal pattern of 

marsh inundation, although meteorological factors (chiefly wind) are also important.  The 

weak astronomical tidal signal experienced at LOLA results in an irregular pattern of 

marsh inundation; here, the marsh platform is sometimes dry or flooded for weeks at a 

time.  Typically, the marsh experienced less wave energy at the LOLA site than at the 
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PKS site. The mean annual salinity was 34 (±1.8) psu and 29 (±4.3) psu at PKS and 

LOLA, respectively.   

 While low-topographic, erosional geomorphology is common among the research 

areas, the PKS research site was established on broad, gradually ramping, back-barrier 

marsh habitat within a dune-and-swale system with few tidal creeks, and the LOLA site 

was established within an alcove of broad-platform marsh habitat.  Spartina alterniflora 

(hereafter, Spartina) and Juncus roemerianus (hereafter, Juncus) were each dominant in a 

mosaic of patches at each site, with Spartina dominating the overall estuarine shore zone 

at PKS.    
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Figure 2.1. Map of NC study area and aerial photo of research sites (stars = marsh planter 

locations) 
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Water level record  

 At each research site, a temporary water level station was established in 

accordance to the requirements of the National Oceanic and Atmospheric 

Administration‟s (NOAA) Center for Operational Oceanographic Products and Services 

(CO-OPS) (NOAA 2003, NOAA 2007).  The PKS station (34.53436
o
N 76.83176

o
W) 

was established at the dock pier of the NC Aquarium in May 2006, and LOLA station 

(34.95098
o
N 76.28112

o
W) was established at the Lola Road dock (property of U.S. Fish 

and Wildlife) in June 2006.  The North Carolina Geodetic Survey established Second 

Order Class 2 benchmarks at each site in the proximity of the water level stations.  Each 

water level station consisted of two HOBO (Onset Computer Corp., model: U20-001-01) 

pressure transducers, one of which measured barometric pressure and the other measured 

water-column pressure; date, time, temperature and transducer pressure were recorded 

every 3 minutes and downloaded monthly using the manufacturer‟s software.  At each 

download and launch, water level relative to station benchmark was recorded for 

reference; from this, water level relative to NAVD88 and mean sea level (MSL) was later 

computed.  A calibrated Topcon
®
 Model RL-50A rotating-laser system was used for all 

leveling at the research sites; a Trimble
®
 5800 RTK GPS system unit was used to verify 

elevation of a temporary benchmark at the PKS marsh-planter site in February 2008.  

Post-processing of water-level data was completed using HOBOware
®
 software adjusting 

to time-referenced, site-specific barometric pressure. Water levels from an 18-month 

period, mid-2006 through December 2007, were used to determine inundation regime 

patterns for each site.  Water levels from the time each monitoring station was 
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established, 20 May (PKS) and 29 June (LOLA), through 17 September 2006 were used 

to determine inundation periods for marsh planter rows. 

Multi-level planters 

 The relationship between marsh surface elevation and inundation varies with 

geomorphology.  At our North Carolina research sites, marsh geomorphology can be 

described as a flat platform (i.e., LOLA) or low-topography ramping platform, with a 

gradual transition of low and steadily increasing elevation with distance from shoreline 

(i.e., PKS).  Howell et al. (2007) found that tidal inundation is a function of elevation and 

that the force of drag does not cause a delay in inundation (i.e., a wave) for at least the 

first 100 m of distance from shoreline.  This evidence allows for the site-specific 

assumption that a given elevation receives the same degree of inundation regardless of 

location within the marsh platform (within 100 m of edge) or in the marsh planter, 

provided that no levee exists.  The proportion of hydrological contributions from 

estuarine, terrestrial and meteorological sources defines the marsh habitat from upland 

habitat within the shorezone.   

 Multi-level marsh planters (Morris 2007) were used to manipulate experimentally 

the elevation (therefore, inundation period) of dominant marsh macrophytes (Spartina 

and Juncus) (Figure 2.2).  Each marsh planter was constructed of 15-cm-diameter PVC 

pipe, cut and bolted to result in open-ended “pots” that formed six rows, at 15-cm vertical 

intervals, ranging from 30 to 105 cm in elevation above the base; there were six replicates 

per row (Figure 2.2).  Planter rows were numbered with row 1 as the most inundated and 

row 6 as the least inundated.  At each site, marsh planters were positioned in the estuary 
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(lowest row facing south) just beyond the marsh platform so that the elevation of row 4 

was approximately equivalent to the mean elevation of the respective macrophyte species 

on the adjacent marsh platform.  At PKS, in 2006, one planter was established with 

Spartina and one with Juncus; in 2007, one planter was established with 3 pots of each 

elevation containing Spartina and the other 3 pots of each elevation containing Juncus.  

Here, the 2007 planter was positioned at a lower elevation relative to the 2006 planter, in 

an attempt to determine the maximum inundation threshold of Spartina.  At LOLA, in 

2006, one planter was established with Juncus, analogous to that at PKS.  Table 2.1 

shows the elevation of each marsh planter row, relative to NAVD88, mean sea level 

(MSL) and its % of time flooded during each growing season.   

 In 2006, marsh planters were planted with Spartina or Juncus, from two similarly 

positioned source plots in the respective areas of the adjacent marsh platform, on 15 and 

16 March and monitored through 15 and 16 September.  Likewise in 2007, planters were 

maintained from 13 and 14 April through 6 and 7 September.  Source plots were limited 

in size to minimize the possibility of picking different genotypes (e.g. Lessmann et al. 

1997).  Lower sections of the planter pots were filled with local estuarine sand and 

approximately the upper 30 cm contained the Spartina or Juncus plugs planted in marsh 

sediments; all fill materials were obtained locally from the adjacent marsh platform at 

both sites.  

 To compare the growth response of Spartina and Juncus in the marsh planters to 

that of the adjacent marsh platform, where possible, row-elevation-equivalent plots were 

established on the platform adjacent to each planter; here, end-of-season aboveground 
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biomass of macrophytes was measured and processed in parallel with that of the marsh 

planters in 2006.  At PKS, plots were established within Spartina that were equivalent in 

elevation to planter rows 1-4 and likewise within Juncus for planter rows 2-4.  At LOLA, 

the marsh platform elevation only differed by ~ 10 cm within the entire study area; 

therefore, elevation-equivalent plots were established within Juncus in three locations for 

planter row 4.  
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             (a)                                                               (b)                              

 

Figure 2.2. (a) Multi-level marsh planters at PKS Spartina (left) and Juncus (right) 

adjacent to marsh platform and (b) close-up photo of multi-level marsh planter  
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Response variables 

 The response of Spartina and Juncus to inundation regime was evaluated by 

measuring (per pot): (1) demographics; length live (green) and dead (brown) of each 

culm (Spartina) or leaf (Juncus) and number of leaves on each stem for Spartina (2007 

only), (2) density, (3) start-to-end of season (seasonal change in) aboveground biomass, 

(4) end-of-season (EOS) aboveground biomass and (5) belowground biomass.  The culm 

(for Spartina) / leaf (for Juncus) (hereafter, culm/leaf) proportion of green-to-brown 

(green: brown) served as a proxy for macrophyte health; we assumed that a seasonal or 

relative decrease in green: brown indicated stress.  The amount of measureable brown 

leaf length on Juncus leaves is generally minimal during about mid-August as leaves 

begin to naturally senesce in NC (Christian et al. 1990); this was not considered a 

confounding factor when comparing the response of Juncus condition by inundation 

regime.  At the beginning of each growing season, the demographics and density of 

aboveground material was measured.  An estimate of initial aboveground biomass was 

computed by multiplying the initial overall Spartina culm or Juncus leaf length per pot 

(demographics data) by the mean mass per culm/leaf length (mass: length) as determined 

by 78 culms and 117 leaves for Spartina and Juncus, respectively. A regression of the 

mass and length yielded a factor of 0.024964 g cm
-1

 (r
2
= 0.72, P< 0.001, n=78) and 

0.010904 g cm
-1

 (r
2
= 0.570, P< 0.001, n=117) for  Spartina culms and Juncus leaves, 

respectively.  At the end of each growing season, aboveground biomass from each pot 

was clipped at the soil surface and placed into labeled bags in the field; in the lab, each 

culm/leaf length was measured (green, brown and total length), culms/leaves counted, 
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and samples were dried at 85
o 
C until weights were stable.  The belowground biomass 

from each pot was placed into labeled bags in the field.  At the lab, samples were first 

liberated from soil while contained in 1-mm mesh nylon screening using water pressure 

(hose and nozzle), then samples were sieved (via water pressure) using 5.6-mm and 1-

mm mesh sieves to separate “live” (>5.6-mm mesh) and “dead” (>1-mm mesh) material 

(similar to methods used by Valiela et al. 1976, Gallagher et al. 1988, Darby and Turner 

2008).  Live and dead belowground fractions were dried and weighed, as were 

aboveground samples; two sub-samples of each dried fraction were ashed at 500
o
 C for 6 

hours to determine organic matter content, thus, belowground biomass data reported here 

includes only organic matter.   

Statistical analyzes   

 SYSTAT 
®
 software (version 11.00.01) and SAS

®
 software (version 9.1) were 

used for all statistical analyses.  Most metrics met the Shaprio-Wilks criteria for 

normality (Shapiro-Wilks P≥ 0.10).  Consequently parametric statistics were used for all 

of our statistical analyses. Inundation period (as percent time flooded), our chief 

independent variable, was normalized by taking the arcsine of the square root of the 

proportion of time flooded (as per Sokal and Rohl 1981).   A General Linear Model 

(GLM) was used to assess the statistical significance (α = 0.05) of the effect of 

inundation on macrophyte growth response metrics.  In some cases, the data indicated a 

plateau or threshold response to inundation; here, we also report cases where a quadratic 

model of the data yielded a stronger relationship (higher r
2
 value) than a linear fit of the 

data.  Where linear regressions were also relevant, we report the strength (r
2
 value) and 
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significance (P-value) of a given growth response to inundation.  Two-sample t-tests 

were used to compare: (1) growth response variables (EOS aboveground biomass) 

between the marsh planter and adjacent marsh platform by inundation period at each site, 

for each species and (2) growth response variable (EOS above- and below-ground 

biomass, seasonal difference in biomass, density and leaf green: brown) of Juncus 

between inundation regime.  Where we report mean values for treatments, we follow with 

the standard error of the mean (SEM) in parentheses.  Some of the 2006 Spartina 

aboveground biomass samples were destroyed inadvertently prior to analysis, and four 

samples were lost from marsh planters (one in 2006 and 3 in 2007), Table 2.3 specifies 

sample size.  
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RESULTS 

Water levels 

 The 18-month water level record revealed distinct differences and patterns 

between the two research sites (Figure 2.3).  Here, the chief harmonic constituents (M2, 

K1, O1 and solar annual) explained 59% and 23 % of the observed water level at PKS and 

LOLA, respectively.  It is assumed that meteorological effects explicate the majority of 

balance of unexplained water levels (i.e., 41 % and 77% for PKS and LOLA, 

respectively). 

 PKS .  At PKS, the difference between MSL and MHW was approximately 0.30 

m and MSL is 0.118 m below NAVD88.  In 2006, the Spartina marsh planter rows were 

submerged 81, 57, 28, 14, 3 and 0.5 percent of the growing season for rows 1, 2, 3, 4, 5 

and 6, respectively (Table 2.1).  In 2006, the Juncus marsh planter rows were submerged 

78, 51, 26, 10, 3 and 0.4 percent of the growing season for rows 1, 2, 3, 4, 5 and 6, 

respectively.  In 2007, the marsh planter containing half Spartina and half Juncus was 

submerged 100, 96, 76, 49, 24 and 7 percent of the growing season for rows 1, 2, 3, 4, 5 

and 6, respectively.  The marsh planter was positioned at a greater depth in 2007 in order 

to determine the depth beyond which Spartina could not survive; this had not been 

achieved in 2006. 

 LOLA.   At LOLA, the difference between MSL and MHW was approximately 

0.04 m and MSL is at the same elevation as NAVD88.  In 2006, the Juncus marsh planter 

rows were submerged 80, 53, 28, 24, 6 and 0.7 percent of the growing season for rows 1, 

2, 3, 4, 5 and 6, respectively (Table 2.1).   
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Figure 2.3. Water levels relative to NAVD88 at PKS (top) and LOLA (bottom) from mid-

2006 through December 2007.  Red points = observed data; black points= fitted 

tidal harmonics (K1, M2, O1 and Sa)   
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Table 2.1. Elevation & percent time flooded (referenced from pot top) of all marsh 

planter rows 

 

Marsh planter row Elevation 

relative to MSL 

(m) 

Elevation 

relative to 

NAVD88 (m) 

Percent 

time 

flooded 

(%) 

Inundation 

(arcsine 

transformed 

value) 

PKS 2006 

Spartina 

 

1 

 

-0.318 

 

-0.200 81. 

 

1.120 

 2 -0.180 -0.062 57. 0.856 

 3 -0.023 0.095 28. 0.558 

 4 0.099 0.217 14. 0.383 

 5 0.275 0.393 3. 0.174 

 6 0.422 0.540 0.5 0.071 

PKS 2006  

Juncus 

 

1 

 

-0.294 

 

-0.176 78. 

 

1.083 

 2 -0.150 -0.032 51. 0.795 

 3 -0.008 0.110 26. 0.535 

 4 0.144 0.262 10. 0.322 

 5 0.296 0.414 3. 0.174 

 6 0.446 0.564 0.4 0.063 

LOLA 2006 

Juncus 

 

1 

 

-0.316 

 

-0.316 

 

80. 

 

1.107 

 2 -0.167 -0.167 53. 0.815 

 3 -0.012 -0.012 28. 0.558 

 4 0.142 0.142 24. 0.512 

 5 0.285 0.285 6. 0.247 

 6 0.452 0.452 0.7 0.084 

PKS 2007 

Spartina & 

Juncus 

 

 

1 

 

 

-0.571 

 

 

-0.453 

 

 

99. 

 

 

1.471 

              2 -0.427 -0.309 92. 1.284 

 3 -0.267 -0.149 67. 0.959 

 4 -0.135 -0.017 42. 0.705 

 5 0.014 0.132 19. 0.451 

 6 0.163 0.281 5. 0.226 
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Vegetation in marsh planters  

  

Macrophytes grown in the marsh planters exhibited an unequivocal response to 

inundation period.  Each metric exhibited a pattern of decreasing growth with increasing 

inundation (Table 2.2, Figure 2.4).  Overall, the degree of inundation had a significant 

effect on: (1) Spartina and Juncus EOS and seasonal change (start-to-end of season 

difference) in aboveground biomass (P< 0.001), (2) EOS and seasonal change in 

aboveground density (P< 0.001), (3) EOS belowground biomass (P<0.001) and (4) EOS 

and seasonal change in Juncus demographics (P< 0.001) when controlled for site, year 

and species.  These response variables did not substantially differ by inundation period at 

the start of each season.  During each growing season, the density increase in culms 

(Spartina) and leaves (Juncus) was inversely proportional to inundation (P< 0.001), and 

densities actually decreased among plants inundated ≥ 92%, in most cases.  The EOS 

Juncus leaf live-to-dead ratio (green: brown) decreased significantly (P< 0.001) with 

increasing inundation.  The marsh planters mirrored the growth patterns of elevation-

equivalent sites monitored on adjacent marsh platform.   
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Table 2.2. Overview of the response of Spartina and Juncus to inundation by various 

growth response metrics 

Marsh macrophyte response to increasing inundation 
 Spartina Juncus 

Response variable   

aboveground total EOS 

biomass 
↘ 

marked ↓ ≥67% inundation 

↘ 

marked ↓ ≥53% inundation 

(meteorologically-dominated 

regime) 

marked ↓ ≥42% inundation 

(astronomically-dominated 

regime) 

aboveground live EOS 

biomass 
↘ ↘ 

marked ↓ ≥53% inundation 

(meteorologically-dominated 

regime) 

marked ↓ ≥42% inundation 

(astronomically-dominated 

regime) 

aboveground total biomass 

differential 
↘ ↘  

marked ↓ ≥42% inundation 

(astronomically-dominated 

regime) 

aboveground total EOS 

density increase 
↘  

no↑  ≥ 92% inundated 

↘  

aboveground EOS green: 

brown  

↔  ↘ 

marked ↓ ≥42% inundation 

(astronomically-dominated 

regime)  

belowground total EOS 

biomass 
↘ ↘ 

 

                                        KEY: 

                                            ↘  decreased linearly 

            ↑   increase 

             ↓   decrease 

                                         ↔ no/little difference 

                                                                                           significant relationship=bolded 
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Figure 2.4. Spartina and Juncus EOS aboveground biomass grown in marsh planters to a 

range of inundation periods  

J. roemerianus 

r
2
=0.246 

 

S. alterniflora 

r
2
= 0.454 

 

 

J. 

roemerianus 

S. alterniflora 

J. 

roemerianus 

S. alterniflora 

 

(proportion time flooded) 
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 Spartina alterniflora.   The degree of inundation had a significant (P< 0.001) 

effect on the EOS and seasonal change in Spartina aboveground biomass (Figures 2.5 

and 2.6).  An increase in inundation significantly reduced the total (live and dead) (P< 

0.001) and live (P< 0.001) EOS aboveground biomass of Spartina (Figure 2.5).  Total 

and live EOS aboveground biomass was significantly (P≤ 0.015) reduced in 2007 

compared to that of 2006, yet trends were similar in both years.  In 2006, the total EOS 

Spartina aboveground biomass ranged from 1150.8 (SEM 138.8) to 262.5 (42.5) gdw m
-2

 

at elevations inundated 0.5% and 81% of the time, respectively; in 2007, this value 

ranged from 382.6 (148.6) to 4.2 (2.3) gdw m
-2

 at elevations inundated 5% and 99% of 

the time, respectively (Table 2.3).  The estimated seasonal change in biomass was also 

inversely related to inundation (r
2
=  0.461, P= 0.001).  Initial estimated biomass was 

found not to be a significant covariate in EOS biomass in either season.  

 During the growing seasons, Spartina culm density generally increased in 

treatments inundated ≤ 81% with the seasonal change in density showing a linear trend of 

decreasing density increase with increasing inundation (r
2
= 0.542, P< 0.0001) (Figure 

2.7).  In addition, mean culm heights increased in all but the most-frequently inundated  

treatment (inundated ≥ 99%) and exhibited a parabolic relationship with inundation 

period (see Appendicies).  During the 2007 growing season, culms were planted with a 

mean of 3 leaves/stem in April, this decreased to 1 leaf/stem in the lowest two elevations 

(≥ 92% inundation) and increased to 5 leaves/stem in the upper four elevations by 

September (≤ 67% inundation).    
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 The study of demographic (proportion live (green) and dead (brown)) changes in 

Spartina over the growing seasons revealed little response to inundation period (P= 

0.630), with the exception of culms inundated > 81% of which a greater proportion of 

culm length per pot was dead than live by end of growing season (Figure 2.8 (a)).  Start-

of-season culm demograhics were found not to be a covariate of EOS culm 

demographics. 

 The degree of inundation had a significant (P<0.001) effect on total EOS 

Spartina belowground biomass, illustrating a clear linear trend of decreasing biomass 

with increasing inundation (r
2
= 0.550, P< 0.001) (Figure 2.9).  We assume that the initial 

aboveground biomass was an indicator of the initial belowground biomass; initial 

aboveground biomass was found to not be a covariate of EOS belowground biomass (P= 

0.250) in post-hoc tests.  In 2006, total EOS Spartina belowground biomass ranged from 

5849.8 (780.5) to 2465.1 (526.5) ash-free dry grams per square meter (afdg m
-2

) at 

elevations inundated 0.5% and 81% of the time, respectively. In 2007, belowground 

biomass ranged from 4247.8 (438.6) to 1068.5 (296.1) afdg m
-2 

(Table 2.3) with a greater 

proportion of this biomass classified as dead.  The more deeply submerged 2007 PKS 

planter exhibited reduced belowground biomass compared to that of 2006, however, this 

reduction was not significant (P= 0.108) when controlling for degree of inundation.    
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Table 2.3. Summary of above- and below- ground Spartina and Juncus EOS biomass 

showing mean (and standard error of the mean (SEM)) 

 

Marsh planter row Mean total 

aboveground biomass  

(SEM) 

ŋ Mean total 

belowground biomass  

(SEM) 

ŋ 

  PKS 2006 

Spartina 

1 262.5 (42.5) 4 2465.1 (526.5) 6 

 2 599.0 (101.8) 2 3215.6 (278.7) 6 

 3 - 0 3719.9 (509.2) 6 

 4 927.3 1 4379.0  (704.5) 6 

 5 932.5 (455.1) 2 5829.0 (653.6) 5 

 6 1150.8 (138.8) 3 5849.8  (780.5) 6 

PKS 2006 Juncus 1 377.2 (61.7) 6 4874.6 (881.4) 6 

 2 489.0 (135.2) 6 4321.1 (1095.9) 6 

 3 848.9 (235.5) 6 3948.3 (935.2) 6 

 4 861.8 (265.7) 6 4294.5 (442.7) 6 

 5 1050.2 (216.2) 6 5462.8 (784.0) 6 

 6 1009.7 (271.8) 6 7753.1 (762.2) 6 

LOLA 2006 

Juncus 

1 430.3 (85.9) 6 3312.7  (295.1) 6 

 2 276.5 (56.8 ) 6 3831.2 (434.6) 6 

 3 1082.4 (299.0) 6 4953.9 (342.5) 6 

 4 1211.2 (233.8) 6 5807.0 (504.7) 6 

 5 1230.6 (287.5) 6 5538.7 (1008.9) 6 

 6 944.4 (228.0) 6 5819.0 (341.2) 6 

PKS 2007 

Spartina 

1 4.2 (2.3) 3 1448.5 (374.0) 3 

 2 5.5 (1.6) 3 1068.5 (296.1) 3 

 3 69.0 (9.1) 2 2545.6 (389.0) 3 

 4 301.3 (9.6) 3 4247.8 (438.6) 3 

 5 351.3 (206.2) 3 3289.7 (461.4) 3 

 6 382.6 (148.6) 3 4035.4 (781.2) 3 

PKS 2007 Juncus 1 384.8 (136.5) 3 2322.7 (444.5) 3 

 2 122.1 1 3658.2 1 

 3 231.4 (90.0) 3 1693.3 (776.7) 3 

 4 266.4 (49.3) 3 3320.1 (1082.1) 3 

 5 532.8 (263.2) 3 2112.5 (277.4) 3 

 6 1004.7 (146.9) 3 2434.0 (387.1) 3 
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Figure 2.5. Live (checkered) and dead (solid gray) end-of-season aboveground biomass 

of Spartina and Juncus planters at PKS and LOLA    
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(a)  

(b)  

(c)  

Figure 2.6. Seasonal change in aboveground biomass of (a) PKS Spartina, (b) PKS 

Juncus and (c) LOLA Juncus 
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(a)  

(b)  

(c)  

Figure 2.7. Seasonal change in the density of PKS Spartina (a), PKS Juncus (b) and 

LOLA Juncus (c) 
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Figure 2.8. Initial (checkered bars) & EOS (black bars) culm (Spartina) and leaf (Juncus) 

demographics of of (a) Spartina and (b) Juncus (Note: Y-axis log scales differ by 

species) and EOS Juncus green:brown leaf ratio at (c) PKS and (d) LOLA  
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Figure 2.9. Live (checkered) and dead (solid gray) end-of-season belowground biomass 

of Spartina and Juncus planters at PKS and LOLA  
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Juncus roemerianus.  The degree of inundation had a significant (P< 0.001) effect 

on the total and live EOS and seasonal change in the aboveground biomass of Juncus 

(Figures R3 and 3a).  Total EOS aboveground Juncus biomass did not differ significantly 

between years (P= 0.183) or sites (P= 0.211) and the overall response to inundation was 

similar.  End-of-season live biomass was significantly (P= 0.001) reduced in 2007 when 

compared to that of 2006 at PKS (no planter at LOLA in 2007).  The seasonal change in 

biomass was inversely related to inundation (r
2
= 0.288, P< 0.0001).  Estimated initial 

biomass was found not to be a significant covariate in EOS aboveground biomass in 2006 

but was found to be a covariate in 2007 (P= 0.04) although estimated initial biomass did 

not differ significantly among treatments in 2007 (P= 0.117).  The seasonal change in 

Juncus aboveground biomass showed a marked reduction when inundated ≥ 28% of the 

time, especially at the irregularly-flooded site (LOLA) (Figures R3 and R3a).  These data 

fit a polynomial model (r
2
= 0.304, P= 0.0001) better than a linear model (r

2
= 0.292, P= 

0.0001), suggesting a threshold response to inundation. 

 At PKS, little live Juncus aboveground biomass remained in treatments with 

inundation times exceeding 50%.  At PKS in 2006, total EOS Juncus aboveground 

biomass ranged from 377.2 (61.7) to 1050.2 (216.2) gdw m
-2

 at elevations inundated 51% 

and 0.4% of the time, respectively (Table 2.3).  Here, virtually no live aboveground 

material remained at treatments receiving ≥ 51% inundation, yet there was no significant 

difference (P = 0.16) in total biomass by inundation period due to high variability in this 

measure (Figure 2.5).  In 2007 at PKS, total EOS Juncus aboveground biomass ranged 

from 122.1 to 1004.7 (146.9) gdw m
-2

 at elevations inundated 92% and 5% of the time, 
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respectively (Table 2.3).  Only one pot of three in the treatment receiving least inundation 

(0.4%) contained live Juncus in September 2007.  At LOLA in 2006, total EOS Juncus 

aboveground biomass ranged from 276.5 (56.8) to 1230.6 (287.5) gdw m
-2

 at elevations 

inundated 53% and 6% of the time, respectively, showing a trend of decreasing biomass 

with increasing inundation with a marked decrease at elevations inundated ≥ 28% and 

little live material present at elevations inundated ≥53% (Table 2.3).   

 Significant (P≤ 0.05) increases in Juncus leaf density occurred at inundation 

periods ≤ 53%, and EOS density showed a linear trend of less density with increasing 

inundation (r
2
= 0.215, P< 0.0001) (Figure 2.7).  The seasonal change in Juncus density 

differed significantly (P< 0.0001) by site as well, with higher densities generally 

observed at LOLA (discussed in detail below see Inundation regime effects on Juncus).  

Estimated mean Juncus leaf height (total pot leaf length divided by density) decreased 

through the 2006 and 2007 growing seasons in all treatments, associated with the general 

increase in leaf densities; however, the mean leaf height response to inundation differed 

significantly between sites (P= 0.001).  At PKS, the effect of inundation on mean leaf 

height was not significant (P= 0.303).  At LOLA, the effect of inundation on the seasonal 

change in leaf height was significant (P< 0.001), showing a smaller increase in leaf 

height with  increased inundation.  

 An analysis of Juncus demographics showed that inundation had a significant (P< 

0.001) effect on the EOS live-to-dead ratio (green: brown) of Juncus leaves and that this 

variable differed significantly by site (P< 0.001).  The initial leaf green: brown was 

found not to be a covariate of this EOS ratio.  Both sites showed the same EOS trend of 
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decreasing green: brown with increasing inundation, yet Juncus leaves at LOLA had a 

higher proportion of green than those at PKS (Figure 2.8).  A survey of demographics at 

PKS in July 2006 showed that the increase in density was similar (P= 0.91) among 

elevations with a mean March-July increase of 11.5 (1.1) leaves/pot; however, all 

elevations decreased significantly (P≤ 0.002) in the green-leaf height between March and 

July. Thereafter, the green-leaf height changed little among treatments, except, at the 

elevation inundated 3% where the green-leaf height was greatest (P= 0.05).  End-of-

season leaf green: brown were dramatically reduced at elevations inundated ≥ 53% at 

LOLA and at elevations inundated ≥ 42% at PKS (Figure 2.8 (c and d)).  

 Inundation time had an overall negative linear effect (P< 0.0001) on total EOS 

Juncus belowground biomass, and no differences were found in this response between 

sites (P= 0.288) (Figure 2.9).  At PKS, the EOS belowground biomass response to 

inundation differed significantly (P=0.001) by year, with 2006 EOS belowground 

biomass illustrating the predominant trend decreasing biomass with increasing inundation 

(P=0.060) and the more deeply submerged 2007 PKS planter exhibiting reduced 

belowground biomass compared to that of 2006 and showing no clear trend (P=0.961) 

(Figure 2.9).  At PKS in 2006, total EOS Juncus belowground biomass ranged from 

3948.3 (935.2) to 7753.1 (762.2) afdg m
-2 

at elevations inundated 26% and 0.4% of the 

time, respectively (Table 2.3).  In 2007, total EOS Juncus belowground biomass ranged 

from 1693.3 (776.7) to 3658.2 afdg m
-2

 at elevations inundated 67% and 92% of the time, 

respectively (Table 2.3).  It is likely that little, if any, belowground growth occurred in 

the 2007 PKS planter.  At LOLA in 2006, total EOS Juncus belowground biomass ranged 
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from 3312.7 (295.1) to 5819.0 (341.2) afdg m
-2

 at elevations inundated 80% and 0.7% of 

the time, respectively.  Thus, showing a trend (P< 0.0001) of decreasing biomass with 

increasing inundation with a marked decrease at elevations inundated ≥ 28% and little 

live material present at elevations inundated ≥53% (Figure 2.5).  As with Spartina, initial 

Juncus aboveground biomass was used as an indicator to approximate the initial 

belowground biomass; initial aboveground biomass was found to be a covariate of EOS 

belowground biomass (P= 0.024) when grouped, but not significant when considered by 

marsh planter (P≤ 0.112).    

Juncus response by inundation regime   

 The response of Juncus to inundation period was compared by inundation regime.  

We observed only modest differences in Juncus response between astronomically-

dominated (PKS) and meteorologically-dominated (LOLA) inundation regimes.  Like 

rows of Juncus grown in planters at PKS and LOLA experienced inundation for similar 

periods of time allowing direct pairwise comparisons by planter row.  In addition, we 

compared LOLA row 4 (24% inundation) with PKS row 3 (26% inundation), as these 

treatments were also analogous (Table 2.1).  

 Overall, response metrics revealed that Juncus was likely more stressed when 

grown in planters within an astronomically-dominated than within a meteorologically-

dominated inundation regime.  A GLM ANOVA showed the total EOS aboveground 

biomass of Juncus experiencing similar inundation periods differed little with inundation 

regime (P≥ 0.178) (Table 2.3).  Site was a significant factor explaining differences in 

EOS live aboveground Juncus biomass (P=0.035) and  seasonal density increase (P= 
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0.005), along with inundation period (P < 0.0001); no interaction was indicated for live 

biomass (P= 0.327) or density (P= 0.253) (Figures 2.5 and 2.7).  Two-sample t-tests were 

used to compare Juncus growth response to inundation regime at analogous inundation 

periods.  The seasonal change in total aboveground biomass was greater (P= 0.047) at 

LOLA than at PKS, when inundated 53% and 51%, respectively.  The difference in EOS 

live aboveground biomass differed significantly (P=0.0132) when comparing inundated 

26 % at PKS and 24% at LOLA.  The seasonal change in Juncus density was greater at 

LOLA when compared to PKS when inundated 24% and 26% (P= 0.025) and 28% and 

26% (P= 0.045).  A proxy for Juncus leaf health, leaf green: brown were generally higher 

at LOLA indicating that Juncus at LOLA experienced less stress than Juncus at PKS.  

This parameter was significantly higher at LOLA when compared to PKS for Juncus 

inundated 24 and 10% (P=0.005), 28 and 26% (P= 0.005) and 24 and 26% (P= 0.0002).  

All of the significant differences observed in aboveground material occurred at 

inundation periods experienced by Juncus on the marsh platform at each site.  A GLM 

ANOVA showed that site did not explain differences in EOS belowground biomass of 

Juncus (P= 0.775).  Two-sample t-tests showed that EOS belowground biomass was 

greater at LOLA than at PKS when inundated 24% and 10% (P= 0.048) and 0.7% and 

0.4%, (P= 0.043). 

Planter-platform comparisons 

 The growth response of vegetation cultivated in the marsh planters reflected that 

of the adjacent marsh platform at analogous inundation periods.  The total EOS 

aboveground biomass did not differ significantly between planter and platform within 



 56 

 

 

respective site and species groups (Table 2.4 and Figure 2.10).  However, this response 

variable did show more variability in the marsh mesocosms than on the marsh platform.  

There was only one point at which the total EOS aboveground biomass grown in the 

planter was significantly lower than the  platform plot experiencing equivalent  

inundation times.  This difference occurred in the 81% inundation treatments of Spartina 

(PKS only) where the EOS aboveground biomass in this platform plot was both greater 

(P=0.003) than that of the planter. 
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Site / 

species 

planter 

row 

Elevation 

relative to 

MSL (m) 

Mean EOS aboveground biomass       

(gdw m
-2

) 

 P 

value 

   Marsh planter 

mean (SEM) 

ŋ Marsh platform 

mean (SEM) 

ŋ  

PKS 

Spartina 

1 -0.086 262.5 (42.5) 4 758.21 (97.70) 5 0.003 

 2 0.056 599.00 (101.8) 2 403.48 (76.96) 5 0.220 

 3 0.213 - 0 617.65 (11.55) 2 - 

 4 0.335 927.3 1 435.97 (97.46) 6 - 

 5 0.511 932.5 (455.1) 2    

 6 0.658 1150.8 (138.8) 3    

PKS   

Juncus 

1 -0.058 377.2 (61.7) 6    

 2 0.086 489.0 (135.2) 6 -  - 

 3 0.228 848.9 (235.5) 6 987.07 (205.65) 6 0.400 

 4 0.380 861.8 (265.7) 6 484.00 (77.55) 2 0.470 

 5 0.532 1050.2 (216.2) 6    

 6 0.682 1009.7 (271.8) 6    

LOLA  

Juncus 

1 -0.316 430.3 (85.9) 6    

 2 -0.167 276.5 (56.8) 6    

 3 -0.012 1082.4 (299.0) 6    

 4 0.142 1211.19 (233.77) 6 993.47 (64.7) 6 0.225 

 5 0.285 1230.6 (287.5) 6    

 6 0.452 944.4 (228.0) 6    

Table 2.4. Comparison of marsh planter and marsh platform end-of-season aboveground 

biomass 
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Figure 2.10. EOS aboveground total biomass comparisons of (a) Spartina at PKS and (b) 

Juncus at PKS and (c) Juncus at LOLA in marsh planters (red) and adjacent 

marsh platform (blue)    ** P < 0.001  
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DISCUSSION 

  

 We examined the growth response of two dominant marsh macrophytes over a 

range of inundation periods in an effort to understand better how coastal marshes will 

respond to the increased flooding inherent from sea-level rise.  Marsh vegetation is likely 

key to accretion processes, whereby increased aboveground density and biomass baffles 

floodwaters, thus potentially increasing the degree of sedimentation, and increased 

belowground biomass contributes directly to the elevation of marsh substrate (Cahoon 

1998, Morris et al. 2002).  We utilized multi-level marsh planters to alter the elevation at 

which Spartina alterniflora and Juncus roemerianus grew for two growing seasons, thus 

exposing each species to a range of inundation periods (extending the range experienced 

by macrophytes beyond that of the adjacent marsh platform).  Additionally, for Juncus, 

we compared the response to inundation period by inundation regime (regular, 

astronomically-dominated and irregular, meteorologically-dominated flooding patterns).  

We measured an array of response metrics in an attempt to fully resolve macrophyte 

response to inundation.  Significant trends of decreasing production with increasing 

inundation were observed across most response variables measured.  The production 

patterns of Spartina and Juncus to inundation period were similar (Figures 2.5 and 2.6); 

though, Juncus appeared to experience greater stress at the astronomically-dominated 

inundation site as compared to the meteorologically-dominated inundation site (Figure 

2.8 (c and d)).  We observed essentially no seasonal increase in Spartina biomass at 

elevations inundated ≥ 67 % (PKS only) and no seasonal increase in Juncus biomass at 
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elevations inundated ≥ 42 % and ≥ 53 % at PKS and LOLA, respectively (Figure 2.6).  In 

addition, Spartina culms and Juncus leaves were largely dead at the end of the growing 

season at elevations inundated ≥ 92 % and ≥ 42 to 53 %, respectively (Figure 2.8).  

Throughout each growing season, culm and leaf densities increased at all elevations, 

however, this increase was negatively correlated with inundation (Figure 2.7).    

Aboveground biomass    

 In the NC planters, we found that peak Spartina aboveground production occurred 

between 0.10 to 0.42 m above MSL, corresponding to inundation periods of 14 to 0.5% 

(Figure 2.11).  In similarly designed planter studies in SC, peak Spartina production 

occurred between 0.3 to 0.6 m above MSL, inundation periods were not measured 

(Morris and Sundberg 2008).  Peak Juncus aboveground production occurred at -0.01 to 

0.45 m MSL in the astronomically-dominated site and -0.01 to 0.29 m MSL at the 

meteorologically-dominated site, these elevations corresponded with inundation periods 

of 26 to 0.4% and 28 to 6% at PKS and LOLA, respectively.  Using MSL as a point of 

reference may adequately consider site specific differences in tidal range and other 

hydrologic factors that influence edaphic conditions (i.e., hydraulic head, aquatic 

exchange rates) as we discuss below.  We anticipate that our findings of peak macrophyte 

production corresponding to inundation period, and perhaps to elevation relative to MSL 

(approximate range 0 – 0.4 m MSL), may be true for coastal marshes more broadly.  We 

found the relationship between elevation and inundation period to be generally linear, yet, 

this relationship differs by geographic location due to the influence of astronomical and 

meteorological effects on water level.  
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 Our results showed a trend of macrophyte production being inversely related to 

inundation period.  This differed from previous such studies and challenged us to define 

the relationship between production and inundation.  In similarly-designed studies using 

multi-level planters to manipulate macrophyte inundation, Morris and Sundberg (2008, 

pers. comm.) observed a trend of increasing S. alterniflora biomass with increasing 

inundation at a site that experienced a 1.4-meter mean range in tide at North Inlet, South 

Carolina.  Corroborating these findings are the observations of S. alterniflora production 

being strongly and positively correlated to changes in local MSL and/or rainfall at the 

same North Inlet site (Morris and Haskins 1990).  This increase in biomass appears to be 

the well established relationship typically associated with an increase in the height, rather 

than density of Spartina (Gallagher 1974, Nixon and Oviatt 1972, Broome et al. 1975, 

Haines and Dunn 1976).  Several investigations (Turner 1976, Pomeroy et al. 1981, King 

et al. 1982) note the presence of tall-form S. alterniflora near marsh creek and estuarine 

edges.  Although relatively little research has focused on the ecology of Juncus-

dominated marshes, several investigations have shown Juncus to occur over a wide range 

of physical and chemical variables (Kruczynski et al. 1978, Eleuterius 1976, Christian et 

al. 1990, Woerner and Hackney 1997, Brinson and Christian 1999, Touchette 2006).  

Juncus biomass, density (Kruczynski et al. 1978, Christian et al. 1990, Touchette 2006) 

and height (Kruczynski et al. 1978) have been found to decrease with distance from 

estuarine edge or with increased sand content of substrate (Woerner and Hackney 1997).  

The standing crop of growing leaves (Christian et al. 1990) and leaf height (Woerner and 

Hackney 1997) of Juncus have been negatively correlated with elevation and salinity.  
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Hook (1991) found that Juncus biomass was limited by inundation and salinity within the 

estuarine edge zone (~200 m from edge) and by nitrogen in the marsh interior (~ 1.6 km 

from edge).  Voss (2006) found that Juncus dominance was inversely related to elevation 

where thin-layers of dredged spoil were added to marsh surface.  Hence, there is a 

preponderance of evidence suggesting that macrophyte production is positively correlated 

with inundation at least up to some undetermined threshold.                              

 In marsh habitats, macrophyte populations experience two divergent gradients of 

aerobic-to-anaerobic edaphic conditions with estuarine inundation being the source of a 

stress-subsidy-stress phenomenon.  For marsh macrophytes (notably Spartina), edge 

habitat offers more favorable edaphic conditions than more inland areas due to the 

increased oxygenation and the greater exchange rate of water in soils within the edge 

environ (i.e., oxygenated pore space allowing aerobic root respiration, low sulfide levels 

and the consequential favorable ammonium kinetics (low Km and high Vmax) that 

facilitate ammonium uptake) relative to interior zones (Mendelssohn et al. 1981, Morris 

and Dacey 1984, Mendelssohn and Morris 2000).  From the edge zone (which receives 

greatest tidal subsidy), a landward gradient occurs toward an anoxic zone that receives 

infrequent inundation and becomes hydraulically isolated, where the estuarine hydraulic 

head disallows soil drainage, redox potential decreases and salinity may accumulate 

(Odum et al. 1983, Bertness and Hacker 1994, Pezeshki 2001). The opposing seaward 

gradient receives increasing periods of inundation where respiratory and sulfide toxins 

are flushed.  Along this continuum, soils become increasingly saturated and wave-stress 

increases.  Along this seaward gradient, the lack of hydraulic isolation may permit 
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Spartina to respond to anoxic conditions by increasing aboveground biomass as a 

mechanism to oxidize the rhizosphere (Howes et al. 1986).  However, under intense 

anoxic conditions, with near constant flooding (saturation), Spartina is unable to maintain 

aerobic respiration, resulting in a net reduction in productivity (Mendelssohn et al. 1981).   

 Visual observations of edge-zone marsh habitat at our NC research sites revealed 

that greater inundation elicited a growth response in S. alterniflora.  At our 

astronomically-dominated inundation site (PKS) we observed an overall greater degree of 

standing crop production within the estuarine edge zone relative to interior zones, as 

expected.  At PKS, the marsh habitat occupies lower elevations within a dune-and-swale 

geomorphic setting, low marsh ramps gradually to high marsh with few tidal creeks.  

Here, we observed the greatest Spartina production (taller Spartina) within sections of 

marsh platform edge that had slumped into the estuary due to erosive undercutting and 

thus received the greatest inundation.  At our meteorologically-dominated inundation site 

(LOLA) we observed no gradient of Spartina production with proximity to estuarine 

edge, as this marsh is typically inundated uniformly.  The LOLA site is a true “platform” 

marsh with a rather uniform elevation and about a 1-m drop to the adjacent estuarine 

bottom, seaward of the platform edge.  Collectively, our visual observations of marsh 

habitat at our research sites support the commonly held hypothesis that S. alterniflora 

production is positively correlated to inundation up to a threshold, yet our results in 

marsh planters contrast with these observations.  Hence, there exists a seeming 

conundrum – for which we extend the Morris et al. (2002) hypothesis.  Spartina 

alterniflora responds to increased inundation by increasing aboveground biomass (Morris 



 64 

 

 

et al. 2002), as long as the rhizosphere is sufficiently oxygenated (as per Mendelssohn 

and Seneca 1980, Mendelssohn et al. 1981, Mendelssohn and McKee 1983, Mendelssohn 

and Morris 2000).  Soil redox potential (Eh) is positively correlated with nutrient 

availability and Spartina aboveground production (Linthurst 1979, King et al. 1982, 

Howes et al. 1986).  Spartina alterniflora oxidizes the sediments in which it grows 

through metabolic processes and diffusion, and culm heights are positively correlated 

with sediment oxidation status (Howes et al. 1981).  There appears to be a feedback loop 

between well-oxidized soils yielding greater production (Linthurst 1979, King et al 1982) 

and an effect of increased production increasing sediment oxidation status (Howes et al. 

1981, Howes et al. 1986).  We postulate that shoot elongation is a stress response to 

increased inundation (as per Howes et al. 1981, Laan and Blom 1990, Blom and 

Voesenek 1996, Grimoldi et al. 1999, Insauti et al. 2001) and that by increasing 

aboveground biomass (particularly height), Spartina provides a mechanism by which to 

oxygenate the root zone (Anderson 1974, Howes et al. 1986, Howes and Teal 1994).  If 

successful in adequately maintaining an aerobic rhizosphere, Spartina can respire 

aerobically and thus yield positive net productivity (as per Howes et al. 1986).  There is 

likely a transition, as inundation period increases, where aerobic respiration transitions to 

dominance by anaerobic respiration.  In addition, there exists some soil saturation 

threshold at which anaerobic respiration can no longer maintain ample cellular 

metabolism and vegetation eventually dies due to anoxic conditions (Ricard et al. 2006).  

Hence, as inundation period is prolonged and prevents recurring aerobic conditions, 
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Spartina dies and the border between marsh and unvegetated benthic habitat is defined.  

We found the inundation threshold for Spartina at PKS to be approximately 67 %. 

  These findings of marsh macrophyte response to inundation can be considered in 

terms of Odum et al. (1979) tidal subsidy-stress hypothesis.  Inundation pulses can 

provide a subsidy to the macrophyte community by flushing soils (importing nutrients 

and exporting toxins), yet prolonged inundation (e.g., ponding without pulsing) serves as 

a stressor (producing an anaerobic environment) (Mendelssohn and Seneca 1980).  We 

posit that it is the duration of inundation and resulting edaphic conditions to which 

macrophytes respond in a unimodal subsidy-stress curve as presented by Odum et al. 

(1979, Figure 2.11).  Inundation period for a given elevation varies with inundation 

regime and is site specific; this is key in determining the oxic condition and exchange 

rates within marsh substrates.  On daily time-scales, the pulsing of astronomical tides 

may serve to aerate intertidal habitats.  This fact may explain why McKee and Patrick 

(1988) reported that S. alterniflora occurred over a greater range of elevation at sites 

where a greater range in tide was present.  In addition, the pulsing paradigm has been 

proposed to explain why Steever et al. (1976) observed a strong positive correlation 

between Spartina productivity and tidal range, suggesting that tidal energy was 

transformed by macrophyte mediation into chemical energy in the form of primary 

production (Odum et al. 1995).  Howes et al. (1986) suggest that increased porewater 

drainage may serve as a mechanism for the proposed tidal subsidy of Spartina production 

(Steever et al. 1976, Odum et al. 1979).  It is likely that ecosystems within 

meteorologically-dominated inundation regimes also have a pulse (Voss 2006), albeit on 
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longer (at least seasonal) time-scales.  Interestingly, we found Juncus production to be 

similar at analogous inundation periods at each of our research sites, under two differing 

inundation regimes (Tables 2.1 and 2.3).  Figure 2.11 illustrates the relationship between 

macrophyte production and inundation and processes that influence this relationship. 

Figure 2.12 illustrates above- and below- ground biomass data from marsh mesocosm 

studies within this conceptual framework. 
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Figure. 2.11. Conceptual diagram of the relationship between marsh macrophyte 

production and inundation and associated processes.  This relationship can be described 

as inundation being a stress-subsidy-stress to macrophyte production along a shore-

normal marsh transect (as per Odum et al. 1979)  
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Figure 2.12. EOS aboveground biomass of Spartina and Juncus cultivated in marsh 

mesocosms in NC (this study) and in North Inlet (NI), South Carolina   
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 Morris et al. (2002) proposed a model suggesting that inundation regulates 

macrophyte production and subsequently the ability of marshes to accumulate sediment 

to maintain elevation relative to sea level.  Marshes positioned at an elevation that is sub-

optimally inundated produce greater biomass with greater inundation and consequently 

have the ability to trap more sediments to equilibrate marsh elevation relative to sea level 

(Morris et al. 2002).  Alternately, marshes positioned at an elevation that is supra-

optimally inundated produce less biomass with greater inundation and are therefore 

unable to maintain elevation relative to sea level (Morris et al. 2002).  Marshes that are 

sub-optimally and supra-optimally inundated (suboptimal elevation) are represented on 

the left and right side of the production- inundation curve, respectively (Figure 2.11).  

Within the framework of this model, our results indicate that NC marshes dominated by 

Spartina and Juncus fall on the right-hand side of the curve and are likely unstable (as per 

Morris et al. 2002, Figure 2).  Their model predicts that macrophyte aboveground 

biomass will decline with greater inundation as RSLR increases.  Exacerbating the 

predicted scenario is the fact that the sediment budgets of NC estuaries are generally 

relatively low (Wells and Kim 1989, Phillips 1992).  Surface erosion at PKS was evident 

by the fact that feldspar marker horizons (for Surface Elevation Tables) could not be 

maintained in experimental plots intended to measure surface accretion.  Fragoso and 

Spencer (2008) have also reported a positive correlation between shallow surface 

sedimentation and macrophyte production, yet cite a different mechanism. Fragoso and 

Spencer (2008) found that S. anglica production and vegetative renewal was positively 

correlated to burial of the basal meristem by sediments.  Despite the mechanism, the 
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eroding status of NC marshes is in part due to many NC estuaries having relatively low 

inorganic sediment budgets.  In such a scenario, even marshes with abundant stem/leaf 

densities would have little sediment available to trap, thus, limiting accretion via 

sedimentation.  This highlights the importance of biogenic accretion processes in some 

marsh ecosystems, like those of the Albemarle-Pamlico Sound, NC. 

 The depth of the tidal prism, particle density and settling rate are among the major 

components that determine the quantity of sediment available to become entrapped and 

retained upon the marsh surface and are important factors in the ability of marsh habitat 

in maintaining elevation relative to rising sea level (as per Morris et al. 2002).  Accretion 

mechanisms, explicitly sedimentation, may operate in different ways within 

astronomically- and meteorologically- dominated inundation regimes.  Krone‟s (1985) 

concept of the inundation depth being proportional to the quantity of sedimentation may 

be true only for astronomically-dominated inundation regimes, where each tidal prism 

that covers the marsh surface has been recharged of sediment from the estuarine source.  

Under irregularly- or meteorologically- dominated inundation regimes, a given flooding 

event may deposit sediment from only one tidal prism, yet the marsh surface may remain 

flooded for an extended period of time.  Because marsh ecosystems that occur within 

meteorologically-dominated inundation regimes are likely to receive less sedimentation 

on a regular basis, biogenic accretion is necessarily a more important factor here in 

determining the surface elevation.  Conversely, the proportion of inorganic sedimentation 

occurring on marshes may take place during the irregular pulses of coastal storms 

(Leonard et al. 1995; Reed 2002).  
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Belowground biomass 

 Marsh macrophytes contribute to the vertical accretion of the marsh platform 

through direct additions of macro organic matter via root growth (Turner et al. 2000, 

Blum 1993, Blum and Christian 2004, Nyman et al. 2006).  The role of sub-surface 

organic accumulation may be more significant for Juncus-dominated marshes than for 

Spartina-dominated marshes as observed from the root dynamics of each species 

(Appolone 2000, Blum and Christian 2004) and as suggested by the relatively lower bulk 

densities and higher organic matter content of Juncus marsh substrate (de la Cruz and 

Hackney 1977, Stout 1978).  Belowground biomass generally reflected the growth 

response patterns observed in aboveground material in this investigation.  However, 

belowground production was inversely related to inundation period in a linear pattern, as 

compared to the curvilinear pattern of the aboveground production.  We observed roots 

extending greater than one meter in length in planter pots receiving minimal inundation. 

Below the initial macrophyte plugs (including 30 cm of marsh sediments), pots were 

filled with sand that may not have been saturated, thus providing elevated pipe soils more 

aerobic edaphic conditions relative to the platform.  Our results show that belowground 

biomass is positively correlated with elevation and are consistent with the basic botanical 

phenomenon of root growth expanding toward water (Schulze et al. 1996) and nutrients 

(Darby and Turner 2008) when such resources are limiting to plant growth.  In addition, 

our results concur with other observations of belowground biomass increasing with 

elevation on marsh platforms (Blum 1993, Widdows et al. 2008).  Collectively, these 

observations suggest that the greatest macro-organic matter contributions are made at 
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higher elevations and that these contributions could account for a greater proportion of 

vertical accretion in high marsh zones.  This bioaccretion process may be especially 

critical for marshes to keep pace with sea level rise in estuaries where little inorganic 

sediment is available.  Belowground biomass has been implicated as an indicator of 

marsh resiliency and recovery and its predictive ability may be superior to that of 

aboveground biomass (Boyer et al. 2000, Turner et al. 2004, Edwards and Mills 2005, 

Simenstad et al. 2005, Peterson et al. 2008b).  Hence, if belowground biomass is key in 

predicting the fate of marsh habitat under a scenario of rising sea level, our data suggest 

that as marshes become inundated for longer periods, they will become less stable if 

deprived of an inorganic sediment supply. 

Juncus response to compare inundation regime   

 Comparing the response of Juncus by inundation regime showed only modest 

differences between astronomically-dominated and meteorologically-dominated flooding 

with generally less production at the astronomically-dominated site.  The differences that 

did occur in Juncus between the two inundation regimes (EOS live and seasonal change 

in aboveground biomass, seasonal change in density and leaf green: brown) were 

observed at elevations at which Juncus typically occurs on the adjacent marsh platforms.  

Marsh platforms occur generally at an elevation approximating MHW (Myrick and 

Leopold 1963, Redfield 1972, Krone 1985, Zedler et al. 1999).  This assumption and our 

water-level data suggest that rows 2, 3 and 4 of the PKS Juncus planter, that were 

vertically positioned at elevations (-0.08 to 0.1 m relative to MSL; MHW = 0.03 m 

relative to MSL at PKS), probably received the greatest wind-induced wave activity, 



 73 

 

 

hence, potentially reducing the amount of net production observed.  These are the same 

elevations at which Juncus naturally occurs on the marsh platform, but are located away 

from the estuarine edge at PKS.  At both research sites, the planters were positioned just 

beyond (seaward of) the natural marsh platform and thus all planter-cultivated 

macrophytes were grown in a higher energy environment relative to those on the adjacent 

marsh platform.  In addition, the PKS site was more energetic on the whole as compared 

to LOLA, due to astronomical tides, greater wind-induced wave activity and greater 

localized fetch.  Despite the difference in energy regimes at our two research sites, the 

growth response of Juncus differed significantly only at the elevations positioned to 

receive maximum wave energy.   

 Zonation of J. gerardi and J. roemerianus within the marsh platform has been 

found to be driven by inundation and salinity (Bertness 1991, Bertness and Pennings 

2000, Pennings et al. 2005), despite observations of Juncus growing along the estuarine 

edge of marsh platforms in quiescent areas of estuaries such as in Albemarle, Currituck 

and Pamlico Sounds, NC (Wilson 1962, Stout 1984, Brinson 1991, this study).  Our 

results show that Juncus production decreases with increasing inundation in both semi-

diurnal and irregularly-flooded inundation regimes and that Juncus production may be 

negatively impacted by the long-term disturbance or the repeated press (Bender et al. 

1984, Glasby and Underwood 1995) of wind-driven wave activity (and perhaps other 

high energy regimes).  The lack of Juncus’ resilience to this repeated press disturbance 

could explain observations of Juncus-dominated marshes being fringed by S. alterniflora 

in astronomically-dominated estuaries and contrasting observations of Juncus growing up 
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to the estuarine edge in meteorologically-dominated marshes, where overall energy 

regimes are relatively lower.  In mesocosms, J. roemerianus yielded greater seasonal 

production within a meteorologically- versus astronomically- dominated inundation 

regime at elevations at which it naturally occurs within the coastal landscape.   

Validity of multi-level planters  

 The aboveground growth response of vegetation in the marsh planters reflected 

that of each given species, site and elevation within the adjacent marsh platform (Figure 

2.10).  End-of-season aboveground biomass values generally did not differ significantly 

between macrophytes grown in the planter and platform among like elevations, where 

those comparisons were possible (Table 2.4) and when compared to other like biomass 

samples harvested for other studies at each site.  The only treatment that differed 

significantly between the planter and platform was observed in the most inundated row of 

Spartina at PKS.  We noted that the platform plot that we thought experienced 81% 

inundation was established in a sparesely vegetated depression upon the marsh surface 

approximately 5 m from the estuarine edge and was the lowest point on the platform 

adjacent to the marsh planters.  We chose to establish a platform plot at this location 

because its unique elevation was the same as row 1 of the Spartina planter, however, we 

recognize that this plot was likely inundated less frequently than row 1 of the planter due 

to its depressed position in the marsh and plants colonizing this plot likely experienced 

little inter- or intra- specific competition.  In mesocosms, there was generally lower 

Juncus EOS biomass at the astronomically-dominated site (PKS) when compared to that 

of the meteorologically-dominated site (LOLA).  The PKS site was located in an area that 
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was exposed to fetch from northerly winds and some boat traffic and thus experienced a 

greater degree of wave energy (in addition to semi-diurnal tidal energy) as compared to 

the LOLA site.  Hence, the extra energy experienced by vegetation in the planters at the 

PKS, the astronomically-dominated site, could reasonably explain observations of lower 

net production.   

 In the marsh planters, macrophytes were grown over a range of elevations 

equivalent to and extending beyond those of the adjacent marsh platform (and thus 

receiving inundation periods analogous to the natural platform, where possible).  We 

expected edaphic conditions of the planters to correspond to those of like elevations on 

the adjacent platform.  Other important hydrological aspects are assumed to have 

occurred comparably at the planter and the adjacent platform (i.e., precipitation, 

percolation, evapotranspiration, etc.).  The plastic pipes of the marsh planters obstructed 

lateral flow; thus, the macrophytes in planter pots most likely experienced less lateral 

flow and greater vertical flow relative to a given elevation on the platform.  In effect, the 

tops and bottoms of the plastic pipes were the only sites of exchange for each planter pot.  

Planter pipes likely received lesser (lower elevations) or greater (higher elevations) 

degrees of drainage relative to the marsh platform.  Thus, although we did not measure 

the hydraulic-head, this variable presumably differed between the planter and platform at 

any given elevation.  Assuming that vertical water movement is more influential than 

lateral movement in the planters (as compared to the more hydraulically-isolated marsh 

platform), tidal pumping may be a more important driver of exchange in the planters.  

Hence, edaphic conditions in the planter pots were likely more anaerobic at lower 
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elevations and more aerobic at higher elevations, relative to those at analogous elevations 

on the adjacent marsh platform. We had not anticipated that we would alter edaphic 

conditions in a manner different from that which the platform experienced, as this was 

not apparent in previous planter studies (Morris pers. comm.).  Differences in tidal range 

(tidal pumping) and its effect on edaphic conditions may, in part, explain differing trends 

in the aboveground production of S. alterniflora cultivated in planters at the NC research 

sites (PKS and LOLA) and those at North Inlet, SC (Morris et al. 2002) and Plum Island, 

MA (Morris and Sundberg 2008, pers. comm.).  The NC sites experienced a relatively 

smaller tidal range and thus, less pumping to aerate substrate.  In addition, we realize that 

relative position of the mesocosm within the tidal frame is critical in determining 

inundation period as noted by Morris and Sundberg (2008).  Therefore, the relative 

position of NC planters within the tidal frame may have been lower than for other studies.  

Nevertheless, neither Spartina nor Juncus occurred naturally at the extreme elevations 

achieved by the planters, yet our results may allow us to predict macrophyte response to 

inundation period and inundation thresholds. 

 We were surprised to find that our multi-level planter results exhibited trends that 

differed from those of previous studies using the same planter design.  These conflicting 

results motivated us to expand our mechanistic thinking and propose a conceptual model 

to aid in resolving the relationship between macrophyte production and inundation.  The 

differing trends in production response to inundation were likely due to a planter‟s 

relative position within the tidal frame.  Our results were similar to those of North Inlet, 

SC when relating Spartina aboveground production to elevation relative to MSL (Figure 
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2.12).  To date, only site-to-site comparisons of S. alterniflora are possible.  We believe 

that we are the first investigators to cultivate J. roemerianus in the multi-level planters.  

The multi-level planters allowed us to manipulate effectively the inundation period for 

each treatment.  
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CONCLUSION 

 Estuarine inundation appears to function as both a subsidy and stressor to marsh 

macrophytes.  The nature of this relationship is determined by the degree of inundation 

and inundation regime.  In general, aboveground biomass elicited a curvilinear 

relationship to inundation, while this relationship with belowground biomass was linear.  

Two important macrophytes in the US South Atlantic and Gulf Coast marshes, Spartina 

and Juncus, exhibited peak aboveground biomass when inundated between 0.5 to 14% 

and 0.4 to 28%, respectively, when cultivated in marsh mesocosms.  In this investigation, 

the inundation period threshold for Spartina and Juncus production occurred at 67% and 

42%, respectively, within an astronomically-dominated inundation regime, and at 53% 

for Juncus within a meteorologically-dominated regime.  The growth response of 

Spartina and Juncus to inundation period was similar; however, Juncus exhibited signs of 

greater stress within the astronomically-dominated inundation regime.  

 Our results show that marsh macrophytes cultivated in the multi-level marsh 

mesocosms reflect the growth patterns of macrophytes on the local platform, although we 

suspect that edaphic conditions in mesocosm differed somewhat from the platform.  The 

marsh mesocosms allowed us to alter effectively the elevation, and therefore inundation 

period, of macrophytes and we believe that this research has advanced the understanding 

of the macrophyte inundation-production relationship.  We have proposed a conceptual 

model to describe the relationship of marsh macrophyte production to inundation period.  

There appears to be an optimal degree of inundation for macrophyte production; this 

optimum is likely species specific.  If macrophytes are sub-optimally inundated, 
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increased inundation will serve as an energy subsidy resulting in an increase in 

production.  If macrophytes are supra-optimally inundated, increased inundation will 

serve as a stressor resulting in a decrease in production (Figures 2.11 and 2.12).  More 

research is needed to elucidate the character of macrophyte growth response (i.e., 

changes in height or density) within the context of the stress-subsidy-stress gradient.   
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Chapter 3.  SPARTINA ALTERNIFLORA AND JUNCUS ROEMERIANUS:  

INUNDATION, DISTURBANCE AND SYMBIOSIS  

 

Abstract  

 

Within two hydrodynamically-different inundation regimes in North Carolina, the growth 

response of and interaction between Spartina alterniflora Loisel and Juncus roemerianus 

Scheele to inundation period were evaluated.  The species were cultivated jointly in 

mesocosms over a range of inundation periods, and groundcover changes were assessed 

after a pulsed disturbance where these species are naturally delineated on the marsh 

platform.  In multi-level mesocosms, end-of-season live aboveground biomass of both 

species was inversely related to inundation period with no species interaction.  Live 

aboveground biomass was significantly greater in a relatively lower energy inundation 

regime for both S. alterniflora (P= 0.02) and J. roemerianus (P< 0.001) over one growing 

season, with  J. roemerianus exhibiting an interaction between inundation period and 

regime.  Spartina alterniflora consistently showed greater growth than J. roemerianus in 

most treatments.  In platform plots, a significant decline in J. roemerianus and 

encroachment of S.alterniflora was observed after a cutting disturbance in both regimes 

over 16 months.  These findings suggest that S.alterniflora is significantly more resilient 

to physical disturbance than J. roemerianus, although each responds similarly to 

inundation period.     
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Introduction 

 The zonation of vegetation is a common feature of salt marshes and involves a 

complex of abiotic and biotic factors.  Marsh ecosystems are uniquely positioned within 

the coastal landscape occurring along the terrestrial-aquatic estuarine interface.  Coastal 

salt and brackish marshes are inherently low in macrophyte diversity because relatively 

few species can tolerate the physical stressors of varying salinity and frequent inundation 

experienced by this habitat.  The degree to which abiotic factors, such as the degree of 

inundation and soil salinity (Pennings and Callaway 1992), form a gradient with distance 

from the estuarine shoreline differs by site and factor, and these factors vary with latitude 

(Bertness and Pennings 2000, Pennings et al. 2003, Pennings et al. 2005).  Zonation is 

better defined in marshes with steep gradients of salinity (Adams 1963) or inundation 

(Chapman 1974, Bertness and Ellison 1987, Bertness and Pennings 2000) than in 

marshes with weak or irregular tidal signals where macrophyte dominance is patchy 

(Kruczynski et al. 1978, Costa et al. 2003).  Examples of heterogeneous zonation are 

found in some mid-Atlantic marshes, where Spartina alterniflora Loisel and Juncus 

roemerianus Scheele each dominate in a mosaic of random monotypic patches at 

densities that favor S. alterniflora and J. roemerianus in the low and mid marsh zones, 

respectively (Brinson and Christian 1999, chapter 2 this thesis).  It is assumed that the 

presence or dominance of species with overlapping environmental tolerance is further 

defined by interspecific competition (Bertness 1991).   

   Spartina alterniflora and J. roemerianus are among the dominant macrophytes of 

tidal and brackish, irregularly flooded marshes, respectively, along the Mid and South 
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Atlantic and Gulf Coasts (Eleuterius 1976, Mitsch and Gosselink 2000); these regions 

comprise approximately 90 % of the U.S. total marsh acreage (NOAA 1990, Watzin and 

Gosselink 1992).  Despite the dominance and abundance of these macrophytes, their 

zonation patterns are not fully understood.  Generally, S. alterniflora occurs along the 

lowest terrestrial elevation, characteristically dominating the intertidal zone, and exhibits 

declining aboveground production and ability to dominate at higher elevations where 

flooding is less regular (Bertness and Pennings 2000, Mitsch and Gosselink 2000).  

Nevertheless, the elevational distribution of S. alterniflora expands locally in range with 

increasing mean tidal range (McKee and Patrick 1988).  Juncus roemerianus tends to 

dominate at slightly higher elevations under irregularly flooded conditions, but it can also 

be found in areas of more regular flooding (Woerner and Hackney 1997, Brinson and 

Christian 1999).  Eleuterius and Eleuterius (1979) determined that inundation period 

could not explain the abrupt delineation between the monotypic zones of S. alterniflora 

and J. roemerianus found in a Mississippi salt marsh.  In Georgia marshes and in 

greenhouse experiments, Pennings et al. (2005) showed that J. roemerianus was limited 

by physical stresses (flooding and salinity) at its seaward boundary and not by 

competition, whereas, S. alterniflora was limited at its landward boundary by competition 

with J. roemerianus.  Brinson and Christian (1999) found the composition of J. 

roemerianus-dominated patches to be stable over a range of elevations in a Virginia 

marsh with some decrease in biomass in the most-frequently inundated zone; this lower 

zone also experienced relatively greater disturbance from wrack deposition.  Wrack 

deposition disturbance was the more dominant factor in the decline of J. roemerianus in a 
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study designed to distinguish between the impacts of inundation and this disturbance 

(Tolley and Christian 1999) at this marsh.  Considering that a complex of abiotic and 

biotic factors dictate marsh zonation, how will the relationship between S. alterniflora 

and J. roemerianus change with the increased inundation inherent to sea-level rise? 

 Even though marsh ecosystems have evolved to be resilient to abiotic stressors, 

press (e.g., sea-level rise) and pulse (e.g., wrack deposition) disturbances (Bender et al. 

1984), which operate on smaller scales, can alter community structure and consequently 

initiate a change in ecosystem state (Brinson et al. 1995, Christian et al. 2000, Turner et 

al. 2003).  The press of a gradual increase in inundation is strongly associated with the 

landward encroachment of low-marsh species into high-marsh zones (Orson et al. 1987, 

Brinson et al. 1995, Donnelly and Bertness 2001, Reed 2002).  Similarly, pulsed events 

such as storm-induced wrack deposition (Bertness and Ellison 1987, Knowles 1991, 

Brewer et al. 1998, Pennings and Richards 1998, Tolley and Christian 1999), sediment 

deposition (Ford et al. 1999, Leonard et al. 2002, Voss 2006), fire (Schmalzer et al. 1991) 

and faunal corridors (Keusenkothen and Christian 2004) can also change marsh 

community structure, although this change may only be temporary.  Within the 

convergence of the low and high marsh zones of southern US marshes, the cause of the 

sharp delineation between S. alterniflora and J. roemerianus monotypic zones is unclear 

(Eleuterius and Eleuterius 1979, Brinson and Christian 1999, Pennings et al. 2005).  This 

abrupt change in vegetation cover does not appear to occur due to inundation period 

(Eleuterius and Eleuterius 1979) as inundation and salinity gradients are diffuse across 

the marsh surface.  Increasing water levels will gradually transform the hydrogeomorphic 
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settings within marshes, promoting a shift in ecosystem state; however, transitions in 

state may be accelerated by pulse disturbances (Brinson et al. 1995, Christian et al. 2000, 

Turner et al. 2003).  The storm-driven deposition of wrack reduces the percent cover of 

Juncus spp. ( J. roemerianus and J. gerardi in the southern and northern US, 

respectively) that dominate the high-marsh zone yielding to the expansion of 

competitively subordinate species (e.g., S. alterniflora, S. patens, D. spicata) that better 

tolerate stressful environmental conditions (Reidenbaugh and Banta 1980, Knowles et al. 

1991, Valiela and Rietsma 1995, Brewer et al. 1998, Pennings and Richards 1998, Tolley 

and Christian 1999, Minchinton 2002, Pennings et al. 2005).  Under a scenario of rising 

sea level, erosional processes, salt intrusion, wrack deposition, storm disturbances and 

root collapse can cause an ecosystem state change whereby a J. roemerianus-dominated 

marsh becomes dominated by S. alterniflora (Christian et al. 1990, Brinson et al. 1995, 

Brinson and Christian 1999, Christian et al. 2000).    

  Biotic interactions concurrently influence the zonation of marsh macrophytes as 

the abiotic conditions change with sea-level rise.  Some researchers propose that there is 

an inverse relationship between the competitive ability and stressor tolerance of species 

(Grime 1974).  According to this paradigm, competitively superior species occupy the 

least stressful zones and displace competitively inferior species to more stressful zones 

(Bertness 1991, Bertness 1992, Pennings and Bertness 2001, Pennings et al. 2005).  This 

pattern is less apparent where abiotic variables fail to form consistent gradients across the 

marsh platform, such as observed in irregularly flooded marshes (Costa et al. 2003).  

Facultative interactions influencing macrophyte zonation have also been demonstrated.  
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In a New England high marsh, Bertness (1991) found that Juncus gerardi, the 

competitive dominant macrophyte, was facilitated by the presence of S. patens and D. 

spicata where these macrophytes mitigated the effects of higher salinity.  In a Georgia 

marsh, Pennings et al. (2005) found J. roemerianus to be competitively dominant, yet to 

facilitate S. alterniflora under flooded conditions.  Bertness (1991) proposes that 

secondary succession may be driven by facilitations in harsh physical environments, but 

that competitive symbioses dominate under benign conditions (Bertness and Shumway 

1993).        

 In this study, I focus on the species-level response at the S. alterniflora - J. 

roemerianus marsh interface to extrapolate how processes at the community level might 

offer insight on marsh zonation and the transformation of a high marsh state to a low 

marsh state.  From the Maryland coast southward to the Texas coast, the dominance of S. 

alterniflora and J. roemerianus serve as practical indicators of the hydrogeomorphic 

setting of many high and low salt/brackish marshes, respectively (Eleuterius 1975, 

Brinson et al. 1995, Mitsch and Gosselink 2000).  Marshes dominated by S. alterniflora 

and J. roemerianus each possess some distinguishing features.  Spartina alterniflora 

tends to dominate the intertidal, low-marsh zone where regular estuarine inundation 

contributes mineral-based sediments, acts to maintain soil salinities and exchanges 

nutrients, toxins and organic matter within this area of the marsh (Brinson et al. 1995, 

Bricker-Urso et al. 1989, Christian et al. 1990, Mendelssohn and Morris 2000, Morris et 

al. 2002, Christian et al. 2000, Christiansen et al. 2000, Nyman et al. 2006).  Juncus 

roemerianus tends to dominate the irregularly flooded, high-marsh zone where 
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meteorological and terrestrial hydrological sources have greater influence, 

bioaccumulation dominates accretion and estuarine exchanges occur less frequently 

(Brinson et. al 1995, Bricker-Urso et al. 1989, Cahoon et al. 1998, Brinson and Christian 

1999, Nyman et al. 2006).  Studies of nutrient budgets suggest that tidal input is the chief 

nitrogen source for the low-marsh zone (Gallagher et al. 1980, Thomas and Christian 

2001); however, nitrogen fixation and denitrification also occur here (Sherr and Payne 

1978, de Souza and Yoch 1997, Teal et al. 1979, Kaplan et al. 1979).  With fewer inputs, 

nitrogen cycling in the high marsh is greater than compared to that in the low marsh 

(Thomas and Christian 2001).  Habitat utilization of low and high marsh zones differ 

where the more frequently inundated intertidal zone is important for aquatic species for 

foraging and refuge (Kneib 1987, Hettler 1989, Fitz and Wiegert 1991, Halpin 2000, 

Craig and Crowder 2000).  However, the irregularly inundated high marsh may serve as 

key nursery habitat to species that benefit from prolonged spring and fall inundation 

(Stout 1984, Marraro et al. 1991, Voss 2006).  Peterson and Turner (1994) found that 

marsh edge zones were used by both resident and transient aquatic faunal species while 

interior marsh zones were chiefly used by resident species.  The habitat complexity 

provided by the diversity of marcrophytes found in state-change transition zones may 

benefit marsh nekton that are able to profit from the expanded variety of habitat 

functionality in close proximity (Crowder and Cooper 1982, Rozas and Reed 1993). 

  Inundation period, salinity level and disturbance are among the chief mechanisms 

believed responsible for the zonation of S. alterniflora and J. roemerianus on the marshes 

where these species dominate.  In this study, I attempt to address the effect of inundation 
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period on macrophyte growth patterns when co-planted, using multi-level marsh planters 

(explained in chapter 2).  I established multi-level marsh planters at two 

hydrodynamically different locations to observe effects of inundation regime; I also 

expect salinity differences between the two sites chosen.  Lastly, I assessed the 

interactive response of these dominant macrophytes to a pulsed disturbance event on the 

marsh platforms.  Here, experimental plots were established and monitored along the 

sharply delineated margin between S. alterniflora- and J. roemerianus- dominant patches 

following a cutting disturbance at each site.  The objectives of this study were to 

determine the growth response and interaction of S. alterniflora and J. roemerianus: (1) 

to inundation period when cultivated jointly, (2) for comparison of inundation period 

effect of jointly planted macrophytes by inundation regime and (3) to a pulsed 

disturbance incurred where they intersect on the marsh platform.  To address these 

objectives, I tested the following hypotheses: 

H
1
: Spartina alterniflora will show dominant growth patterns over Juncus 

roemerianus in a tidally-dominated inundation regime and at greater inundation 

periods. 

 

H
2
: Juncus roemerianus will show dominant growth patterns over Spartina 

alterniflora in a meteorologically-dominated inundation regime and at shorter 

inundation periods. 

 

H
3
: The reduction in aboveground cover will be greater for Juncus roemerianus 

than for   Spartina alterniflora after the first year following a cutting disturbance.  
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Methods 

Site description 

 A consequence of the unique geographic features along the North Carolina (NC) 

coastline results in two basic types of estuarine hydrological regimes, those dominated by 

semi-diurnal tides and those that are irregularly inundated.  The coastal barrier islands of 

the Outer Banks enclose the Albemarle-Pamlico Estuarine System (APES), the largest 

lagoonal estuary in the U.S.  Here, the few inlets along the Outer Banks limit tidal 

exchange between the Atlantic Ocean and APES.  The watersheds of four major rivers 

(Chowan, Roanoke, Tar-Pamlico and Neuse) drain much of the NC northern and central 

coastal plain and flow into the APES.  With limited tidal exchange, water levels in the 

APES are largely dictated by meteorological factors, chiefly wind.  In contrast, estuaries 

along the southern NC coastline are significantly smaller with more numerous inlets that 

provide great connectivity to the Atlantic Ocean, and are thus dominated by astronomical 

forces.  Of the 105,866 hectares of coastal marshes within NC (NOAA 1990), 

approximately 60% are dominated by J. roemerianus (Wilson 1962).  Spartina 

alterniflora generally dominates the shoreline fringe and intertidal tidal zones of NC 

marsh ecosystems.  Juncus roemerianus typically dominates the high marsh zones, and it 

occurs abundantly along quiescent estuarine shorelines.   

  I established research sites at two points along the central NC coast at Pine Knoll 

Shores (PKS) (33.6953
o
 N, 76.8417

o
 W) and at Lola (LOLA) (34.9501

o
 N, 76.2796

o
 W) 

(Figure 3.1).   
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Figure 3.1. Map of NC study area and aerial photo of research sites (stars indicate marsh 

planter locations)   
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Sites were spaced approximately 50 km apart and experienced similar meteorological 

conditions but different tidal regimes.  The astronomical tidal range was measured as 60 

cm and 8 cm for PKS and LOLA, respectively (chapter 2 this thesis). The dominance of 

the astronomical tidal signal at PKS is responsible for a regular, semi-diurnal pattern of 

marsh inundation, although meteorological factors (chiefly wind) are also important. The 

weak astronomical tidal signal experienced at LOLA results in an irregular pattern of 

marsh inundation; here, the marsh platform is sometimes dry or flooded for weeks at a 

time depending on wind speed and direction. Typically, the marsh experienced less wave 

energy at the LOLA site than at the PKS site; this was likely due to the smaller fetch 

length of the LOLA site (see discussion). Over the 18-month period of this study, the 

mean annual salinity was 34 (±1.8) psu and 29 (±4.3) psu at PKS and LOLA, 

respectively.  While low-topographic, erosional geomorphology is common between the 

research areas, the PKS research site was established on broad, gradually ramping, back-

barrier marsh habitat within a dune-and-swale system with few tidal creeks, and the 

LOLA site was established within an alcove of broad-platform marsh habitat.  S. 

alterniflora (hereafter, Spartina) and J. roemerianus (hereafter, Juncus) were each 

dominant in a mosaic of random patches at each site, with Spartina dominating the 

overall estuarine shore zone at PKS.   

Water level record  

 At each research site, a temporary water level station was established in 

accordance to the requirements of the National Oceanic and Atmospheric 

Administration‟s (NOAA) Center for Operational Oceanographic Products and Services 
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(CO-OPS) (NOAA 2003, NOAA 2007).  The PKS station (34.53436
o 
N 76.83176

o 
W) 

was established at the dock pier of the NC Aquarium in May 2006, and LOLA station 

(34.95098
o 
N 76.28112

o 
W) was established at the Lola Road dock (property of US Fish 

and Wildlife) in June 2006.  The North Carolina Geodetic Survey established Second 

Order Class 2 benchmarks at each site in the proximity of the water level stations.  Each 

water level station consisted of two HOBO (Onset Computer Corp., model: U20-001-01) 

pressure transducers, one of which measured barometric pressure and the other measured 

water-column pressure; date, time, temperature and transducer pressure were recorded 

every 3 minutes and downloaded monthly using the manufacturer‟s software.  At each 

download and launch, water level relative to station benchmark was recorded for 

reference; from this, water level relative to NAVD88 and mean sea level (MSL) was later 

computed.  A calibrated Topcon
®
 Model RL-50A rotating-laser system was used for all 

leveling at the research sites; a Trimble
®
 5800 RTK GPS system unit was used to verify 

elevation of a temporary benchmark at the PKS marsh-planter site in February 2008.  

Post-processing of water-level data was completed using HOBOware
®
 software adjusting 

to time-referenced, site-specific barometric pressure. Water levels from 23 March 

through 21 September 2007 were used to determine inundation periods for each site. 

Multi-level planters  

 Multi-level marsh planters, as described in the previous chapter (chapter 2, this 

thesis), were used to manipulate the elevation and therefore inundation period of co-

planted dominant marsh macrophytes (Spartina and Juncus) (Figure 3.2).  Each marsh 

planter was constructed of 15-cm-diameter PVC pipe, cut and bolted to result in open-
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ended “pots” that formed six rows, at 15-cm vertical intervals, ranging from 30 to 105 cm 

in elevation above the base; there were six replicates per row (Figure 3.2).  Planter rows 

were numbered with row 1 as the most inundated and row 6 as the least inundated.  At 

each site, marsh planters were positioned in the estuarine waters (lowest row facing 

south) just beyond the marsh platform.   
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Figure 3.2. Multi-level marsh planter co-planted with S. alterniflora and J. roemerianus 

at LOLA adjacent to marsh platform 
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The lower portion of each planter pot was filled with local estuarine sand and the upper 

30 cm contained the Spartina and Juncus plugs planted in marsh sediments.  Source plug 

material was harvested from the adjacent marsh platform along the Spartina-Juncus 

margin on 13 and 14 April 2007 at PKS and LOLA, respectively.  One co-planted planter 

was established at each site with Spartina-Juncus plugs comprised of approximately 

equal proportions of Spartina and Juncus with a minimum of 3 Spartina stems and 3 

Juncus leaves in each plug.  Another planter was established at PKS as an individually-

planted reference for comparison with co-planted pots; here, 3 pots of each elevation 

containing Spartina and the other 3 pots of each elevation containing Juncus.  Reference 

and co-planted pots contained approximately equal amounts of vegetation.  To discern 

differences between individually- and co- planted samples, the seasonal or monthly 

production of individually-planted Spartina and Juncus from like rows were matched for 

comparison with co-planted samples.  Table 3.1 shows the elevation of all marsh planter 

rows, relative to NAVD88, mean sea level (MSL) and percent of time flooded during 

each growing season.   
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Table 3.1. Elevation (relative to MSL and NAVD88) (m) and inundation periods of 

marsh mesocosm rows 

 

Marsh planter row Elevation 

relative to 

MSL (m) 

Elevation 

relative to 

NAVD88 (m) 

Percent 

time 

flooded 

(%) 

Inundation 

(arcsine 

transformed 

value) 

PKS 2007   

Co-planted 

1 

-0.618 -0.500 100. 

 

1.516 

 2 -0.472 -0.354 96. 1.369 

 3 -0.309 -0.191 75. 1.044 

 4 -0.175 -0.057 49. 0.778 

 5 -0.023 0.095 24. 0.511 

 6 0.130 0.248 7. 0.267 

LOLA 2007  

Co-planted 

1 

-0.310 -0.310 

 

100. 

 

1.571 

 2 -0.157 -0.157 77. 1.065 

 3 -0.005 -0.005 36. 0.644 

 4 0.143 0.143 12. 0.356 

 5 0.294 0.294 2. 0.142 

 6 0.355 0.355 1.1 0.105 

PKS 2007 

Spartina & 

Juncus 

reference 

1 

-0.571 -0.453 

 

 

99. 

 

 

1.493 

              2 -0.427 -0.309 92. 1.292 

 3 -0.267 -0.149 67. 0.958 

 4 -0.135 -0.017 42. 0.704 

 5 0.014 0.132 19. 0.451 

 6 0.163 0.281 5. 0.223 
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Several plant growth variables were measured to quantify macrophyte response to 

inundation.  After a 2-week acclimation period, in each pot, each culm (Spartina) or leaf 

(Juncus) was counted and measured for net total length, live length (green portion) and 

dead length (brown portion) from the stem/leaf base to the leaf tip (tallest leaf tip for 

Spartina). Measurements were repeated on an approximately month basis.  At the end of 

the growing season (EOS), all samples were removed from planter pots on 6 and 7 Sep 

2007 at PKS and LOLA, respectively.  Here, aboveground biomass from each pot was 

clipped at the soil surface and placed into labeled bags in the field; in the lab, each 

culm/leaf length was measured (green, brown and total length), culms/leaves counted and 

samples were dried at 85
o
C until weights were stable.  The belowground biomass from 

each pot was placed into labeled bags in the field.  At the lab, these samples were first 

liberated from soil while contained in 1 mm mesh nylon screening using water pressure 

(hose and nozzle), the length of the three longest roots of each species were identified and 

measured from base of respective rhizomes, then samples were sieved (via water 

pressure) using 5.6-mm and 1-mm mesh sieves to separate “live” (5.6-mm mesh) and 

“dead” (1-mm mesh) material (similar to methods used by Valiela et al. 1976, Gallagher 

et al. 1988, Darby and Turner 2008).  Live and dead belowground fractions were dried 

and weighed, as were aboveground samples; two sub-samples of each dried fraction were 

ashed at 500
o
 C for 6 hours to determine organic matter content, thus, belowground 

biomass data reported here includes only organic matter.  To estimate the initial biomass 

of each species, I multiplied the sum of culm or leaf lengths per pot by the weight-length 

ratio computed for another component of this study (chapter 2, this thesis).  These ratio 
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values were 0.010904 g cm
-1

 for Juncus and 0.024964 g cm
-1

 for Spartina.  The same 

ratios were applied to total (green and brown length) biomass and live (green length) 

biomass computations for each species.   

Disturbance plots  

 On the marsh platform at each site, 2-m X 1-m paired plots were delineated 

randomly along the Spartina- Juncus margin so that a 1-m
2
 square quadrat of Juncus 

abutted a 1-m
2
 square quadrat of Spartina (Figure 3.3). Therefore, each plot consisted of 

1 m
2
 of Juncus and 1 m

2 
of Spartina.  In one of each of the plot pairs, the vegetation was 

clipped to the ground and removed to simulate a de-vegetation disturbance and the other 

was undisturbed as a control in the same vicinity. Such a de-vegetation disturbance could 

occur due to a fire or wrack deposition that denudes the aboveground material from the 

marsh surface.  During sampling, a 1-m
2
 enumerated quadrat, divided into one-hundred 

cm
2
 cells, was placed over each plot so that each cell could be repeatedly located and 

characterized for content of vegetative cover.    
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Figure 3.3. Top: Photograph and illustration of a plot delineated along S. alterniflora- J. 

roemerianus margin showing 100 10-cm X 10-cm grid cells within a 1-m
2 

S. 

alterniflora quadrat Bottom: Photograph showing control (foreground, left) and 

cut (right) paired plots in the burnt area at LOLA  
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The rank-ordered list of species contained within each cell at the surface was logged 

before the disturbance treatment, and at 2, 12 and 16 months post-treatment.  The ground 

cover of each plot was assessed on 21 May and 11 July 2007, 1 June and 10 October in 

2008 at PKS, and on 17 May and 17 July 2007 and 2 June and 12 October 2008 at 

LOLA.  Ground cover classes were recorded as being dominated by Spartina, Juncus, 

other species (species noted), or bare substrate.  At LOLA, the number of disturbance 

factors was doubled because areas of the study site had been subjected to fire in February 

2007, as part of the USFWS management plan.  Hence, I replicated the disturbed cut 

(primary disturbance) and control paired plots in both burnt (secondary disturbance) and 

unburnt zones of the marsh.  There were a total of 8 plots (4 pairs) established at PKS and 

16 plots (8 pairs) established at LOLA for this phase of the study.  The presence of wrack 

was also noted; however, little wrack has been found in our plots to date.  

Statistical analyses  

 SYSTAT 
®
 software (version 11.00.01) was used for statistical analyzes.  

Inundation period (as proportion of time flooded, Table 3.1), the chief independent 

variable, was normalized by taking the arcsine of the square root of the proportion of time 

flooded.  The inundation proportion of time flooded was used in figures for the 

convenience of readers; statistical analyzes utilized the transformed inundation value.  

Most metrics and indices met the Shaprio-Wilks criteria for normality (Shapiro-Wilks P≥ 

0.10).  A General Linear Model (GLM) was used to assess the statistical significance (α = 

0.05) of the effect of inundation on macrophyte growth response metrics and indices.  

Because I found linear relationships in the growth response of Juncus and Spartina to 
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inundation when individually-planted in a previous mesocosm study, I expected a similar 

linear response when co-planted, unless a symbiotic relationship between these species 

caused an interaction.  A repeated measures analysis was used to compare the percent 

ground cover of Spartina and Juncus quadrats in control and disturbed (clear cut) plots 

between treatments (cut and burnt (LOLA only), with in treatments and for interactions 

between treatments. 

Dominance indices 

 I created three indices to evaluate the relationship between Juncus and Spartina, 

each indicates the dominance of one species to another using different response variables.  

Dominance indices employed only aboveground material because the two macrophyte 

species were co-planted in pots and belowground material could not be isolated by 

species appropriately. The first index considers the proportional change in the total 

aboveground biomass of each relative to one another.  Here, the seasonal proportional 

change in the total aboveground biomass of Juncus was subtracted from that of Spartina 

(Equation 1).  The second index computes only live aboveground biomass in the same 

manner (Equation 2).  The third index considers the net change in culm (Spartina) and 

leaf (Juncus) live (green) length of each species on an approximately monthly basis and 

then normalizes net length change by the number of days between each sampling period.  

Here, the monthly net change in Juncus live leaf length per pot was subtracted from that 

of Spartina (Equation 3).  All indices use the same method for quantifying macrophyte 

dominance.  A value of zero indicates an equal proportional contribution from both 

species.  Values > 0 indicate increasing Spartina dominance, and values < 0 indicate 



 116 

 

 

increasing Juncus dominance.  As a reference for the co-planted pots, data from the 

individually-planted planter pots were paired within a given inundation treatment so that 

one Juncus pot was matched with one Spartina pot.  These individually-planted data 

served as a reference for comparison purposes. 

Macrophyte dominance index # 1 =  

   [(BSEOS(total) – BSi(total)) / BSi(total)] - [(BJEOS(total) – BJi(total)) / BJi(total)]              Equation 1 

Where: 

BSEOS(total)  =  end-of-season Spartina total (live plus dead) biomass / pot  

BSi(total) =  initial Spartina total biomass / pot 

BJEOS(total) = end-of-season Juncus total biomass / pot 

BJi (total) = initial Juncus total biomass / pot 

 

Macrophyte dominance index # 2 =  

   [(BSEOS(live) – BSi(live)) / BSi(live)] - [(BJEOS(live) – BJi(live)) / BJi(live)]                Equation 2 

Where: 

BSEOS(live)   =  end-of-season Spartina live biomass / pot 

BSi (live) =  initial Spartina live biomass / pot 

BJEOS(live)  = end-of-season Juncus live biomass / pot 

BJi (live) = initial Juncus live biomass / pot 

 

Macrophyte dominance index # 3 =   

   [LLST2 – LLST1] - [LLJT2 – LLJT1] / T2 - T1 (# days)                          Equation 3 

Where: 

LLS =  live length of Spartina culms / pot 

LLJ =  live length of Juncus leaves / pot 

T1 = start of sampling period 

T2 = end of sampling period  
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Results 

Marsh planters 

 Spartina and Juncus growth patterns each yielded a similar response to inundation 

when co-planted in marsh mesocosms. The EOS Spartina total (live plus dead) 

aboveground biomass differed significantly with inundation period in all planters (P ≤ 

0.011) (Figure 3.4).  The EOS Juncus aboveground biomass differed significantly (P≤ 

0.027) with inundation period only at PKS (co-planted and reference planters), not at 

LOLA (P= 0.691).  When considering EOS live only material, Spartina aboveground 

biomass was clearly inversely proportional to inundation period (P≤ 0.009) in all planters 

and that of Juncus differed significantly only at LOLA (P= 0.0006) also showing a 

threshold in which EOS live biomass was negligible when inundated ≥ 77% (Figure 3.4).   
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Figure 3.4. End-of-season total (left column) and live (right column) Juncus (red) and 

Spartina (blue) in (a) LOLA, (b) PKS and (c) REFERENCE marsh planters    
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The EOS aboveground net biomass of both Spartina and Juncus differed by 

inundation regime.  Aboveground production was generally lower in the co-planted and 

reference mesocosms cultivated at PKS than at LOLA (co-planted mesocosm only). The 

EOS live aboveground net biomass in co-planted planters differed significantly between 

sites, differing (P= 0.017) and (P< 0.0001) for Spartina and Juncus, respectively, with 

greater production of both species at LOLA (Figure 3.4).  For EOS live Juncus, there was 

an interaction between inundation period and site (P= 0.003), due to less live Juncus 

present at PKS.  The seasonal change in total aboveground biomass likewise differed (P= 

0.006) and (P=0.736) for Spartina and Juncus, respectively (Figure 3.5).  As noted 

previously, much of the EOS total Juncus biomass consisted of dead material.  The three 

indices were computed to elucidate macrophyte dominance (noted above) did not differ 

by inundation regime in any case.  Therefore, although there was less live Juncus at PKS 

by the end of the season, the overall growth patterns of Spartina and Juncus were similar 

between regimes.   

 The relative growth response of Spartina and Juncus aboveground material was 

assessed to examine the influence of inundation period on seasonal growth.  The relative 

seasonal change in total (live and dead) aboveground biomass differed significantly with 

inundation period for Spartina (P ≤ 0.008) in all three planters, yet not for Juncus in any 

planter (Figure 3.5).   
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(a)  

(b)  

(c)  

Figure 3.5. The seasonal change in the aboveground biomass of Juncus (red) and 

Spartina (blue) in co-planted planters at (a) LOLA and (b) PKS and (c) 

individually-planted reference planter (mean ± 1 SEM) 
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There was no interaction between relative seasonal growth of these macrophytes with 

inundation period.  The seasonal proportional change in the total aboveground biomass of 

Juncus was subtracted from that of Spartina to yield an index (Equation 1) that was 

plotted by inundation period (Figure 3.6, left column).  Here, a value of zero indicates an 

equal relative biomass contribution from each species.  Values > 0 indicate increasing 

relative contribution from Spartina, and values < 0 indicate increasing relative 

contribution from Juncus.  Only the planter with pots of individual species yielded 

indices that differed significantly (P=0.03) with inundation.  Overall, Spartina dominance 

of the relative total biomass was marginal and this dominance decreased with increasing 

inundation.   Juncus was dominant in the most frequently inundated treatments.  It is 

important to note that a majority of the biomass of frequently inundated Juncus was 

comprised of dead material.  The seasonal increase in Spartina stem and Juncus leaf 

density was inversely proportional to inundation period.  This response was statistically 

significant for Spartina (P ≤ 0.002) in all three planters and for Juncus in the co-planted 

planter at LOLA (P = 0.011) only (Figure 3.7).  
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Figure 3.6. Indices of Spartina – Juncus seasonal proportional change in total (left column) 

and live (right column) aboveground biomass in (a) LOLA, (b) PKS and (c) 

REFERENCE planters (mean ± 1 SEM) Y axis index key: 0 = Spartina and Juncus 

contribute equally, values > 0 indicate increasing Spartina dominance, and values < 0 

indicate increasing Juncus dominance [note: Y-axis scales differ in scale]   
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Figure 3.7. The seasonal change in Juncus leaf (red) and Spartina stem (blue) density in 

(a) LOLA, (b) PKS and (c) REFERENCE planters    

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (proportion of time)

-20

-10

0

10

20

S
e

a
so

n
a

l c
h

a
n

g
e

 in
 d

e
n

si
ty

 (
#

/p
o

t)

Spartina

Juncus

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (proportion of time)

-20

-10

0

10

20

S
e

a
so

n
a

l c
h

a
n

g
e

 in
 d

e
n

si
ty

 (
#

/p
o

t)

Spartina

Juncus

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (proportion of time)

-20

-10

0

10

20

S
e

a
so

n
a

l c
h

a
n

g
e

 in
 d

e
n

si
ty

 (
#

/p
o

t)

Spartina

Juncus

(a) 

(c) 

(b) 



 124 

 

 

 Live aboveground material was analyzed to elucidate differences in the response 

of Spartina and Juncus to inundation period and possible species interactions, as this 

variable describes the current season‟s growth and may more accurately reflect growth 

patterns than total biomass.  Therefore, the second and third indices were based upon live 

material only (see methods Equations 2 and 3).  The second index evaluated the 

difference in the seasonal proportional net change in EOS live aboveground biomass 

between Spartina and Juncus; these results were similar, but differed statistically from 

the EOS total aboveground biomass index (as described above) (Figure 3.6, right 

column).   Here, the relative live biomass contribution by Spartina was greater than that 

of Juncus in all three planters, with only the PKS co-planted planter index differing 

(P=0.027) by inundation period.      

 A third index was created to evaluate the relationship between live Spartina and 

Juncus aboveground material on an approximately monthly basis.  Similar to the previous 

indices, an increasing relative contribution by Spartina yields greater positive values and 

an increasing relative contribution Juncus dominance yields values that are more 

negative.  For the initial April-June period, this index differed significantly (P ≤0.026) 

with inundation period for both the PKS and LOLA co-planted planters; surprisingly, 

increasing inundation periods yielded an increasing relative contribution by Spartina at 

LOLA and an increasing relative contribution by Juncus at PKS (Figure 3.8).  As the 

season progressed in the co-planted planter at LOLA, Spartina increasingly dominated 

the live aboveground biomass composite, at proportions that were similar among 

inundation periods.  At the end of the season, only two pots in the co-planted planter at 



 125 

 

 

LOLA contained live material at the treatment inundated 100%, with one containing only 

Juncus and the other containing only Spartina.  Within the PKS co-planted planter, the 

relative contribution by Spartina increased overall throughout the growing season, with 

greater relative contributions by Juncus observed at greater inundation periods in June 

and July (Figure 3.8).  Here, this dominance index differed significantly (P ≤0.003) with 

inundation period for the entire of the season.  The individually planted reference planter 

(PKS only) initially showed a much greater contribution by Spartina live material; this 

dominance declined as the net growth declined in both Spartina and Juncus, indicative of 

increasing stress.  A majority of the Juncus plants died in this planter.   
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Figure 3.8. Indices of Spartina or Juncus dominance derived by subtracting the Juncus 

change in live length per pot by that of Spartina [(S live length chg) - (J live length 

chg)] / # days between sampling. April-June (upper left), June-July (upper right) and 

July-September (lower left) for (a) LOLA, (b) PKS and (c) REFERENCE planters 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

(b) 

(a) 

(proportion  time flooded) 

 

(proportion  time flooded) 

 
(proportion  time flooded) 

 

(proportion  time flooded) 

 

(proportion  time flooded) 

 
(proportion  time flooded) 

 



 127 

 

 

 
 

Figure 3.8. (cont‟d) Indices of Spartina or Juncus dominance derived by subtracting the 

Juncus change in live length per pot by that of Spartina [(S live length chg) - (J 

live length chg)] / # days between sampling. April-June (upper left), June-July 

(upper right) and July-September (lower left) for (a) LOLA, (b) PKS and (c) 

REFERENCE planters (mean ± 1 SEM) Y axis index key: 0 = Spartina and 

Juncus contribute equally, greater Spartina contribution yields more positive 

values and greater Juncus contribution yields more negative values   

  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Inundation (% time flooded)

-5.0

-2.5

0.0

2.5

5.0

S
p
a
rt

in
a
-J

u
n
c
u
s
 l
iv

e
 c

h
a
n
g
e
 i
n
d
e
x

(c) 

(proportion  time flooded) 

 
(proportion  time flooded) 

 

(proportion  time flooded) 

 



 128 

 

 

 The belowground material of the co-planted planters contained an intertwined 

mass of both Juncus and Spartina macro-organic matter.  The EOS combined (both 

species) belowground biomass was inversely proportional to inundation at LOLA 

(P<0.0001); there was no trend in combined belowground biomass response to 

inundation at PKS (Figure 3.9).  In an effort to detect differences in the belowground 

response of each species, the 3 longest roots of both Spartina and Juncus were measured 

for each co-planted pot.  The only significant difference in this measure was observed at 

PKS, where the mean root length of Spartina was  

inversely proportional to inundation period (P=0.0001) (Figure 3.10).  The individually 

planted reference planter (PKS only) also yielded a trend of decreasing belowground 

biomass with increasing inundation for both species (Figure 3.9).  However, as with the 

co-planted planter (root length only) from PKS, trend for root length was only significant 

for Spartina (P= 0.0002).  In 2006, individually planted pots of Spartina and Juncus (at 

PKS) and Juncus (at LOLA) showed the same trend of decreasing belowground biomass 

with increasing inundation and this measure differed significantly (P≤ 0.001) in all 

planters.  
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(a)

 
(b)

 
 

Figure 3.9. (a) Belowground biomass of planters co-planted with Juncus and Spartina at 

LOLA (red) and PKS (blue) and (b) Belowground biomass of reference planter 

containing individually planted Juncus (red) and Spartina (blue)   Note: 

inundation is arcsine transformed for clarity 
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(a)  

(b)

 
 

Figure 3.10. The mean of the 3 longest roots of Juncus (red) and Spartina (blue) in co-

planted planters at (a) LOLA and (b) PKS 
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Platform disturbance plots  

 The experimental disturbance conducted along the Spartina-Juncus margin on the 

marsh platforms elicited a greater response from Juncus than from Spartina at both sites.  

Each plot consisted of a 1-m
2
 quadrat of Juncus abutting a 1-m

2
 of Spartina.  The 

clipping disturbance significantly reduced the proportion of Juncus in respective quadrats 

at both PKS (P= 0.0002) and LOLA (P= 0.0477) when compared to controls, over 16 

months (Table 3.2).  In addition, the proportion of Spartina observed in Juncus quadrats 

was significantly greater in clipped plots at PKS (P< 0.0001) and LOLA (P= 0.009) than 

in controls (Figure 3.11).  At PKS, a significant proportion of disturbed plots remained 

unvegetated in both Juncus (P=0.015) and Spartina (P=0.043) quadrats.  Here, in October 

2008, 19.3% (±8.38) of Juncus disturbed quadrats and 6.0% (± 7.12) of Juncus control 

quadrats contained bare cells; likewise, 6.3 % (±2.87) of Spartina disturbed quadrats and 

5.5% (± 2.87) of Spartina control quadrats contained cells that were dominated by bare 

surface area.  At both sites, variation within some treatments was sufficient to render 

differences between treatments as statistically insignificant; this was especially true for 

burnt plots at LOLA and for Spartina quadrats at PKS (Figure 3.11 and Table 3.2).  
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Table 3.2. Repeated measures analysis (P-values) of disturbance experiment at the Juncus-Spartina margin on marsh platform 

at PKS and LOLA, NC 

  

Juncus 

in 

Juncus 

Spartina 

in 

Spartina 
Spartina 

in Juncus 
Juncus in 

Spartina 

Other 

spp. in 

Juncus 

Other 

spp. in 

Spartina 
Bare cells in 

Juncus 
Bare cells 

in Spartina 

PKS 

        

  

between Tx 

 

0.0002 0.3868 <.0001 0.4586 none  none  0.0149 0.0431 

within Tx 

 

0.0030 0.0908 0.0006 0.2501 

  

0.1402 0.0132 

Tx * Tx   0.0017 0.0082 0.0004 0.1464     0.1329 0.0163 

LOLA 

        

  

between Tx 

 

0.0477 0.7116 0.0088 0.6638 0.8796 0.5058 0.122 0.422 

within Tx 

 

0.0162 0.1492 0.0631 0.6721 0.1877 0.1273 0.0001 0.1117 

Tx * Tx   0.0205 0.3317 0.0400 0.1808 0.5568 0.5731 0.0002 0.085 

LOLA  

        

  

between Tx 

        

  

  Tx 0.0365 0.7141 0.0075 0.6774 0.3874 0.4988 0.0939 0.4302 

  fire dist 0.0564 0.3880 0.1357 0.4105 0.0358 0.1743 0.0447 0.6787 

  fire*Tx 0.9138 0.3286 0.3306 0.1818 0.2165 0.4870 0.7994 0.2502 

within Tx 

        

  

  Tx 0.0069 0.1170 0.0327 0.7077 0.3380 0.1164 <.0001 0.0763 

  Tx * Tx 0.0090 0.3036 0.0181 0.1805 0.3919 0.5979 <.0001 0.0542 
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Few additional species occurred at our research sites.  I observed a greater variety of 

vegetative species at the LOLA site than at the PKS site; at LOLA, Distichlis spicata and 

Salicornia spp. were most prevalent among minor occurring species.  No other vegetative 

species was observed in any experimental plots at PKS; however, D. spicata and 

Salicornia spp. were observed in the general study area.  At LOLA, the percent cover of 

minor species was significantly (P= 0.036) greater in Juncus quadrats that had been 

disturbed by fire as compared to those not burnt for the entire study; the cover of these 

species did not vary (P= 0.39) between Juncus cut and control quadrats.  At LOLA, 

minor species dominated cells in 0.75% (± 1.5) and 2.0% (±1.83) of control and cut plots, 

respectively, within both species in the burnt area.  And minor species only dominated 

cells in 0% and 0.75 (±1.5) of control and cut plots, respectively, within both species in 

the unburnt area.  Sixteen months after the cutting disturbance, there were actually more 

cells consisting of minor species in Spartina than in Juncus burnt quadrats, in both cut 

and control plots.  However, the burning factor was not significant (P= 0.174) overall for 

the presence of minor species in Spartina quadrats.  Plant communities within the areas 

previously exposed to fire were more diverse than unburnt areas in both control and cut 

plots (Figure 3.11).  Within the first 16 months (2 growing seasons) of this experiment, 

Juncus exhibited depressed resilience to a pulsed disturbance, and Spartina has shown 

competitive dominance over Juncus at both sites following a pulsed disturbance.  
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                              PKS                           LOLA – unburnt                    LOLA- burnt 

(a)  

(b)   

(c)    

                                                                 
Figure 3.11. Proportions of (a) Juncus in Juncus quadrats, (b) Spartina in Spartina 

quadrats, (c) Spartina in Juncus quadrats, (cont‟d...) in control and cut plots at 

PKS (left column), LOLA unburnt zone (center column) and LOLA brunt zone 

(right column) prior to treatment (0 mo.), July 2007 (2 mo.), June (12 mo.) and 

October (16 mo.) 2008 
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                               PKS                          LOLA – unburnt                   LOLA- burnt    

(d)   

(e)    

(f)    

                                                         
Figure 3.11. Proportions of (...cont‟d) (d) Juncus in Spartina quadrats, (e) other species in 

Juncus quadrats, (f) other species in Spartina quadrats (...cont‟d) in control and 

cut plots at PKS (left column), LOLA unburnt zone (center column) and LOLA 

brunt zone (right column) prior to treatment (0 mo.), July 2007 (2 mo.), June (12 

mo.) and October (16 mo.) 2008 
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                                PKS                           LOLA – unburnt                  LOLA- burnt    

(g)   

(h)    

 

 
 

 

Figure 3.11. Proportions of (...cont‟d) (g) bare cells in Juncus quadrats and (h) bare cells 

in Spartina quadrats in control and cut plots at PKS (left column), LOLA unburnt 

zone (center column) and LOLA brunt zone (right column) prior to treatment (0 

mo.), July 2007 (2 mo.), June (12 mo.) and October (16 mo.) 2008 
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Discussion 

 In this study, the response of Juncus and Spartina was evaluated when cultivated 

jointly over a range of inundation periods. Little difference was found between the net 

growth responses of these dominant macrophyte species.  In mesocosms, EOS 

aboveground biomass of both species was inversely related to inundation period with no 

species interaction.  Seasonal production of both Spartina and Juncus were greater within 

an irregularly inundated regime (LOLA) where salinities were slightly lower and wind-

driven wave action was less than in the semi-diurnal inundation regime (PKS).  In a 

separate experiment on the marsh platform at the same sites, the percent cover of Juncus 

yielded significantly to Spartina for at least 16 months following a pulsed disturbance 

where these species are naturally delineated.  Data revealed no significant interaction 

between Spartina and Juncus with inundation period and a significant decline in Juncus 

and encroachment of Spartina after a pulsed disturbance event.      

 Trends of decreasing EOS aboveground biomass with increasing inundation were 

similar to those of Spartina and Juncus grown over a range of inundation periods in 

individual planter pots at PKS (in 2006 & 2007) and likewise for Juncus only at LOLA 

(in 2006) (chapter 2, this dissertation).  Overall, the co-planted and reference planters at 

PKS exhibited signs of greater stress (poor growth) than did the co-planted planter at 

LOLA in 2007 and compared to the three planter experiments at both sites in 2006. 

 In multi-level marsh planters, Spartina was found to be slightly dominant in 

relative net seasonal production over Juncus (Figure 3.6).  The dominance by Spartina 

was inversely proportional to inundation in a semi-diurnal inundation regime and without 
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trend in an irregular inundation regime (Figures 3.6 and 3.8).  At LOLA, the irregularly 

inundated site, Juncus exhibited a threshold effect showing a sharp decrease in 

production when inundated ≥ 77% and likewise for Spartina when inundated 100 % 

(Figures 3.4 and 3.5).  While the proportion of live Spartina increased more than that of 

Juncus in a majority of inundation treatments, the cause of greater senescence by Juncus 

remains unclear.  Results support the findings of Eleuterius and Eleuterius (1979) in their 

determination that inundation period did not explain the sharp delineation between 

Spartina and Juncus zonation.  The inundation tolerance ranges of Spartina and Juncus 

overlap greatly, yet Spartina does withstand a greater degree of inundation than does 

Juncus (Pennings et al. 2005, chapter 2, this dissertation).  Pennings et al. (2005) found 

that Spartina better tolerated inundation than did Juncus in transplant experiments.  In 

mesocosm experiments, Voss et al. (chapter 2, this dissertation) found that Spartina 

yielded more net growth over a greater range of inundation than did Juncus, with growth 

essentially ceasing at inundation periods ≥ 67 % and ≥ 42 to 53 % for Spartina and 

Juncus, respectively.  In this mesocosm experiment (which examined 6 inundation 

treatments over a range from 1.1 to 100% inundation periods), macrophyte dominance 

sometimes differed significantly by inundation period, yet trends in Spartina dominance 

in co-planted mesocosms were weak and differed by inundation regime (Figures 3.6 and 

3.8).   Hence, the general uniformity of Spartina dominance across inundation periods 

may be due to its broader tolerance to inundation over Juncus.      

 The generally greater relative aboveground contribution by Spartina over Juncus 

may have been influenced by macrophyte growth patterns as well.  Christian et al. (1991) 
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and Williams and Murdoch (1972) found that new Juncus leaves grow (increase in green 

length) during the months of March through early August and subsequently senesce (die 

back from tip to leaf base) from mid-August until complete death (100% brown) about 

one year later. Juncus leaf growth may continue from the basal meristem while 

senescence proceeds from the leaf tip (Christian et al. 1991).  In South Carolina, Morris 

and Haskin (1995) found Spartina‟s maximum monthly growth rates to occur during the 

months of July and August and peak biomass density occurred in September.  The 

dominance indices that rely heavily upon September EOS data (Equations 1 and 2) may 

reflect the natural late-season senescence of Juncus, which co-occurs during peak 

Spartina productivity.  The black needle rush, Juncus, grows more slowly and 

persistently throughout the year (Eleuterius 1975, Christian et al. 1990), while the grass, 

Spartina, becomes dormant in the winter with active growth occurring in warm months 

(Teal and Kanwisher 1966, Turner 1976, Mendelssohn and Morris 2000).  The growth 

characteristics of the two macrophytes examined vary in their annual life cycle.  

Therefore, the use of end-of growing-season metrics to assess production may yield a 

more accurate interpretation of Spartina net production than it does for Juncus 

production.  The EOS biomass density assessment is the standard in the field of marsh 

ecology (Hopkinson et al. 1980), because a majority of coastal marsh research has 

traditionally focused on Spartina. 

 This study found no interaction between Spartina and Juncus growth patterns and 

inundation period, yet response to disturbance differed by species.  Pennings et al. (2005) 

found that Juncus:  (1) reduced Spartina biomass in low salinity (10 psu) treatments that 
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received a regular flooding and draining sequence and (2) increased Spartina biomass in 

low salinity treatments that remained flooded.  These authors propose that Juncus might 

facilitate Spartina by oxygenating soils.  My planter results do not illustrate a competitive 

or a facultative relationship between Spartina and Juncus with inundation period or 

regime.  However, co-planted pots were generally more productive than individually 

planted pots at the site where this comparison was possible (PKS).  At LOLA, the net 

growth of Juncus was similar between the co-planted pots (2007) and individually 

planted pots (2006).  On the marsh platform, I observed greater resilience in Spartina 

plots than in Juncus plots to a cutting disturbance at both sites.  Observations also 

revealed a significant invasion of Spartina in disturbed Juncus plots at PKS (P< 0.001) 

and LOLA (P=0.009).   

  Inundation regime was an important factor in the net production of both Spartina 

and Juncus.  The seasonal change in aboveground biomass was significantly lower in co-

planted mesocosms cultivated at PKS than that cultivated at LOLA.  However, the 

species dominance indices did not differ with inundation regime.  The growth patterns of 

Spartina and Juncus differed by regime, yet their response to inundation period was 

similar. The reduced EOS live Juncus in the astronomically-dominated regime revealed a 

significant (P= 0.003) interaction with inundation period.  Wind-driven wave energy was 

an obvious abiotic variable that differed between the two inundation regimes that could 

explain differences in net production at my sites.  Fetch length can be used as a proxy for 

wave energy.  The PKS site had a fetch length 30 times greater than that of LOLA and 

therefore was assumed to have experienced a higher energy regime.  Fetch length for the 
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mesocosms was approximately 3 km and 0.1 km at PKS and LOLA, respectively.  Even 

though marshes at the southern end of the Pamlico Sound can experience a fetch length 

of up to 100 km, the research site, at LOLA, was positioned within a confined lagoonal 

area.  The PKS site was protected to some extent; however, it experienced the greatest 

fetch from northerly winds, which dominate in storm conditions and tend to occur at 

relatively higher wind speeds.  An estimate of wave climate along a shoreline can be 

made by considering fetch distance, wind speed, wind direction and percentage of wind 

occurrence; these are the components of the Relative Exposure Index (REI) developed by 

Keddy (1982) and further modified by Shafer and Streever (2000).  Sites with higher REI 

values experience greater wave energy.  Cowart et al. (2007) calculated the shoreline REI 

at the LOLA site to be approximately 12; this was much lower than the mean REI for the 

PKS area that was estimated to be 66 (range: 25 - 167).  Here, the specific mesocosm site 

was only analyzed for LOLA.  Marsh planter mesocosms were positioned to reflect the 

environmental conditions experienced by a majority of marsh habitat within respective 

regimes.   

 The estuarine salinity was comparable between the two inundation regimes.  Even 

though estuarine salinities were similar and often overlapped, the two sites were 

classified differently in terms of salinity, with the PKS site (34 ±1.8 psu) being euhaline 

and the LOLA site (29 ±4.3 psu) being polyhaline.  Because I did not manipulate this 

variable, nor did it differ significantly between sites, my data do not allow me to draw a 

conclusion about the effect of salinity on the interaction of Spartina and Juncus.    



 142 

 

 

  Pulse and repeated press disturbances appear to play a key role in shaping 

community structure within marsh habitat.  An experimental pulsed disturbance (cutting) 

elicited community shifts in experimental plots established along the Juncus and Spartina 

margin on marsh platforms.  Within both inundation regimes, Juncus cover was 

significantly reduced with significant Spartina encroachment in response to cutting 

compared to controls.  These findings concur with the paradigm noted in the introduction.  

Juncus is considered competitively superior to Spartina (Pennings et al. 2005); it 

therefore occupies the least stressful zones, thus displacing competitively inferior species 

(here, Spartina) to more stressful zones (Bertness 1991, Bertness 1992, Pennings and 

Bertness 2001, Pennings et al. 2005). Disturbance may explain the community shift that 

was observed at the naturally occurring margin of these macrophytes.  Additional 

observations from this study support this paradigm, as well as demonstrate the effects of 

pulse (cutting) and repeated press (wave energy) disturbances.  At the more energetic site 

(PKS), a significant proportion of surface area remained bare after disturbance in plots of 

both species, underscoring the stressful conditions in which no macrophyte colonized.  At 

this site, I hypothesize that relatively higher wave energy was also responsible for the 

decreased net production observed in the mesocosms experiments.  Wave energy is such 

an important stressor here that it may be largely responsible for the zonation of 

macrophytes rather than inundation alone.  Only Spartina occupies the marsh intertidal 

zone within 10 m from the estuarine edge at PKS, although areas that are more distal are 

regularly inundated.  Both Juncus and Spartina occur in a mosaic of monotypic patches 

for a broad zone, landward of the 10 m edge zone, where wave energy has been reduced.  
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At the more quiescent site (LOLA), both Juncus and Spartina occur along the estuarine 

edge of marshes, as well as in random monotypic patches across the marsh.  In addition, 

other competitively inferior (Bertness 1991) species (e.g., D. spicata and Salicornia 

spp.), species typically associated with high marsh, were observed across the LOLA 

marsh, indicating perhaps that wave-action disturbance was insufficient to exclude these 

species.  These infrequently occurring species were present at relatively higher densities 

in both control and cut plots that had been disturbed by fire prior to the initiation of the 

disturbance experiment, indicating that a burning disturbance elicited a community shift.  

While this study was not designed to quantify wave energy, sufficient evidence exists to 

consider future research on the relative impacts of wave energy and inundation period on 

Juncus production.       

 Collectively, these observations suggest that the cumulative effects of multiple 

disturbances (e.g., fire, wrack deposition, wave action and inundation) may be greater 

than that of individual disturbances (Sousa 1984, Turner et al. 2003).  Based on this study 

and the work of others, it has been postulated that pulsed (cutting, wrack deposition) and 

repeated press (wave energy) disturbances yield a more pronounced response than do 

press disturbances (SLR) (Sousa 1984, Turner 1989, Turner et al. 1993).  Tolley and 

Christian (1999) found the effect of a pulsed wrack deposition disturbance to override the 

effects the press disturbance of increased inundation in an experiment designed to 

separately quantify both disturbance types.  Understanding the role of disturbance type, 

frequency and severity, as well as that of cumulative effects, is an area of research 

requiring more attention given the anticipated impacts of global climate change.  The 
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findings of this study support the conceptual model of ecosystem state change proposed 

by Brinson et al. (1995) in which the effects of a press disturbance (e.g., sea-level rise) 

may be less evident than the effects of pulsed (e.g., wrack deposition, fire) or repeated 

press (wave action) disturbances, which may push an ecosystem state beyond a threshold 

from which it can recover.  However, it is the press disturbance that moves the threshold 

closer to the tipping point and the pulse/repeated press disturbance that ultimately results 

in a change of ecosystem state (Brinson et al. 1995, Christian et al. 2000). 

 Ecosystem disturbances can be viewed as events or processes that reset the 

successional „clock‟ (Sousa 1984, Turner et al. 2003).  Such perturbations test ecosystem 

resiliency and may even increase resiliency by increasing biodiversity (Southwood 1977, 

Sousa 1984, Mooney and Godron 1983, Peterson 1997).  As the effects of multiple 

disturbances (presses and pulses) accumulate and interact, ecosystem resilience is likely 

to decrease (Turner 1993, Folke et al. 2004).  Sea-level rise is a press disturbance (e.g., 

increased inundation and wave action) that continually shifts the tolerance range of 

organisms in a landward direction.  Under a scenario of accelerating SLR, organisms may 

be displaced further landward with each pulsed disturbance event (e.g., storm, fire, wrack 

deposition).  Cumulative disturbances may serve as a mechanism that drives the 

transgression process on a landscape scale.  
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Chapter 4.  MEASURING THE LOSS AND RESTORATION OF  

COASTAL MARSH ECOSYSTEM SERVICES 

 

Abstract 

 

 Marsh ecosystems are recognized for providing a wealth of ecosystem services 

within the world‟s coastal zones.  The contributions of these services are often not fully 

recognized until ecosystem function is reduced or eliminated.  In the U.S.A., the Clean 

Water Act, Comprehensive Environmental Response, Compensation, and Liability Act 

(CERCLA), the Oil Protection Act and the Coastal Zone Management Act (in part) have 

been enacted in an attempt to sustain the societal benefits derived from such public trust 

resources.  A key challenge to those responsible for the management of public trust 

resources is the qualification and quantification of the ecosystem services provided by 

natural resources. In this chapter, I critically review the scaling of the losses and gains in 

marsh ecosystem services within the context of coastal marsh habitat injury, restoration 

and creation as achieved by the Natural Resource Damage Assessment (NRDA) process.  

I focus on the methods and criteria used for compensatory restoration measures.  The 

“scaling” of ecosystem services is a method for quantifying ecosystem services and has 

been used historically in NRDA and compensatory restoration cases. This method 

involves: (1) the identification of natural resource ecosystem services, (2) the selection of 

metrics for ecosystem services which serve as a proxy for ecosystem function and 

condition, (3) the quantification of service using those proxies and (4) development of 

equivalency models that demonstrate how alternative restoration projects offset 

ecosystem losses.  Here, I discuss the use and determination of metrics (or suites of 

metrics) that effectively, efficiently and defensibly evaluate the ecosystem services of 
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natural, injured and restored marshes.  After an introduction of compensatory restoration, 

Habitat Equivalency Analysis and marsh ecosystem services, I discuss: (1) quantification 

of marsh injury, (2) quantification of marsh creation and restoration, (3) insights from the 

hydrogeomorphic approach and (4) climate change considerations for restoration 

projects. 
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Introduction 

Context for measuring ecosystem services 

 Natural ecosystems provide a suite of ecosystem services that sustain the 

functioning of the ecosystems themselves and enrich human experience, enterprise, and 

endeavor (Daily et al. 1997, CESR 2008).  For example, as part of a co-evolutionary 

partnership honeybees pollinate many terrestrial plants, facilitating their propagation, 

while also serving to pollinate the flowers of orchard trees and field crops essential to 

agricultural production. The contributions from ecosystem services are often 

unrecognized, unappreciated and undervalued.  As a consequence, environmental insults 

to public and private waters and lands and the ecosystems they support were long 

accepted without requiring compensation.  Oil spills, chemical releases, habitat 

destruction during land development, and many other human-induced perturbations to 

natural ecosystems represented an externalization of the cost of doing business, with the 

public rights implicitly being transferred to private rights when degraded services were 

not replaced by the parties responsible.  

 In the United States, numerous federal policies and legislative acts have 

recognized the consequence of preserving critical ecosystem services provided by public 

trust resources and have established requirements for the compensation of environmental 

injuries.  A “no net loss” policy for wetlands under the federal Clean Water Act requires 

that construction projects avoid, then minimize where unavoidable, and finally mitigate 

any remaining damage to wetlands.  The Comprehensive Environmental Response, 

Compensation, and Liability Act (CERCLA) and the Oil Pollution Act (OPA) establish 
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procedures for federal and state governments and American Indian tribes to assess 

injuries to natural resources caused by oil or chemical releases and to seek compensatory 

restoration for losses to the public trust system.  The authority to seek compensation for 

natural resource damages (NRD) under these statutes has led to a burgeoning field of 

study. Other United States laws with a restoration component include the Coastal Zone 

Management Act, the Endangered Species Act, the Marine Mammal Protection Act and 

others (Allen et al. 2005).  Requirements for restoration and public compensation for 

resource injuries have more recently been adopted in the European Union under the 

Environmental Liability Directive of 2004 (EU 2004). 

 In this chapter, I use the framework established by U.S. statutes and the natural 

resource damage assessment (NRDA) process as a basis for qualifying and quantifying 

the ecosystem services rendered by coastal marsh habitat.  In an effort to assure that 

services rendered by public trust resources are sustained, trustees must determine ways in 

which injury to and restoration of ecosystem services can be measured and balanced. This 

is achieved by itemizing: (1) the level of damage to a given natural resource, (2) a 

prediction of the level of natural or aided recovery of ecosystem services (primary 

restoration), (3)  interim losses in services and (4) appropriate secondary restoration 

alternatives to compensate for interim losses (compensatory restoration).  Primary 

restoration involves returning resources to their baseline condition.  Compensatory 

restoration involves a series of steps, beginning with identification of the ecosystem 

services that are affected, then progressing to selection of proxies (metrics) representing 

the most important ecosystem services, quantification of injury using those proxies, and 
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development of equivalency models that demonstrate how alternative restoration projects 

offset ecosystem losses.  Such techniques collectively determine the appropriate scale of 

compensatory restoration actions and are often known as “restoration scaling” methods 

(NOAA 1997, Chapman and Julius 2005). 

 Figure 4.1 shows graphically the role of compensatory restoration in offsetting 

lost resource services.  When an incident occurs that causes resource injury, services 

decline to below their baseline level.  “Baseline” refers to the level of services the 

resource would have provided through time had the injury not occurred.  The baseline 

level of services varies over time and thus is not necessarily the same as the level of 

services prior to injury because of temporal variations in natural environmental forcing 

factors and other human interventions impacting resource services.  Efforts may be 

undertaken to minimize the further spread of or directly remediate the resource injury, 

and these efforts are often termed “primary” restoration.  Primary restoration accelerates 

recovery to baseline, reduces the total quantity of services lost over time, and reduces the 

required quantity of compensatory restoration.  Area A under the baseline services curve 

in Figure 4.1 shows the total loss in services that accrues prior to recovery, sometimes 

described as “interim” loss.  Note that this interim loss would have been greater in the 

absence of the primary restoration done to contain the damage.  Restoration scaling 

methods determine appropriate compensation by establishing equivalence between 

services lost in area A and services gained in area B. 
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Figure 4.1. Using compensatory restoration to offset lost resource services (English et al.      

 2009) 

Incident 

occurs 

Baseline 

services 

Primary 

restoration 

begins 

Compensatory 

restoration 

begins 

Full natural 

recovery 

Time 

Level of 

resource 

services Services lost due to 

injury, or “interim” 

loss 

A 

B 

Services gained from 

compensatory 

restoration 



 164 

 

 Compensatory restoration projects are selected and compensatory restoration is 

implemented at some time following the initial incident.  Some resource types are 

restored, established or enhanced with the purpose of providing compensation for future 

or unavoidable resource damages, such as with wetland mitigation banking (USFWS 

1983, NAS 2001).  Compensatory restoration increases resource services to above their 

baseline level and thereby holds potential for offsetting the interim losses (Figure 4.1). 

Compensatory restoration is distinguished from primary restoration in that it enhances or 

replaces services different from those injured, with the difference being either the type of 

services restored or the location where services are restored.  Baseline services are 

conveyed with respect to restoration are thus distinct from the injury baseline, but are 

illustrated in the graph using a single line for simplicity.  The difference between restored 

and baseline services for compensatory projects traces out area B, representing the total 

gains from compensatory restoration over time.   

Habitat equivalency analysis (HEA) 

 Compensation for interim losses had been traditionally viewed as a claim for 

monetary damages (Yang et al. 1984, DOI 1986).  With the recovery of injured resources 

addressed through primary restoration, the motivation for addressing interim losses was 

primarily economic, involving compensation, incentives to deter polluting activities, and 

fairness.  The need to address interim losses is particularly clear when the best course of 

action at an affected site is to allow for natural recovery; compensating for interim losses 

yields no net loss of resource benefit, in theory (Brans 2001).  A practical solution was to 

calculate the value of interim losses and spend the recovered funds on resource 
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enhancements.  Difficulties with this approach included the high cost of studies to value 

resource injury and controversies surrounding the available economic methods, such as 

contingent valuation (Arrow et al. 1993). 

 Recognizing the high cost of resource valuation studies, Unsworth and Bishop 

(1994) proposed Habitat Equivalency Analysis (HEA) as an alternative approach to 

determining compensation for interim losses.  Their published article formalizes methods 

that practitioners in the field had been developing over several years. Habitat 

Equivalency Analysis relies on metrics such as vegetative cover or sediment toxicity to 

evaluate a change in habitat ecosystem services. The HEA model that they developed 

involves a set of economic assumptions that allows monetary values to be replaced by 

units of habitat area.  The emphasis shifted from a damages-based claim to a 

compensation-based claim, with losses in habitat area replaced by gains in habitat area.  

The amount of a claim for compensation is then based on the cost of restoring the 

required habitat area, and the exercise of converting habitat losses to a monetary value is 

no longer necessary.  The HEA method was upheld in court in United States v. Fisher 

(1997) and United States v. Great Lakes Dredge and Dock (2001).  

 Subsequent studies refined the HEA model and replaced simple measures of 

habitat area with more precise biological metrics of habitat service and function (Fonseca 

et al. 2000, Strange et al. 2002, Cacela et al. 2005). The expanded set of metrics measures 

biological changes that are assumed to be directly proportional to changes in public 

value, so that the exercise of monetizing value can be avoided.  In 1996, regulations for 

the Oil Pollution Act expressed an explicit preference for HEA models over monetary 
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valuation (NOAA 1996).  However, more recent regulations issued under the Superfund 

law (CERCLA) refrained from affirmatively encouraging HEA  over methods based on 

monetary valuation (DOI 2008).  Methods for quantifying service losses induced by 

injury and service gains emerging from restoration require the development of an 

appropriate metric or suite.  Like most modeling techniques, the selection of a metric 

involves a tradeoff between simplicity and realism.  A metric must be simple enough to 

be observed with reasonable precision and at reasonable cost.  However, selection of a 

simple metric limits consideration of multiple complex factors relevant to the realistic 

evaluation of ecological services. There are situations in which employing a suite of 

metrics is more effective in defining a level of ecosystem service; however, in reality, one 

must balance the effectiveness of using multiple metrics with efficiency.  

 Units used in metric-based scaling incorporate the basic elements of ecosystem 

service losses and gains over time.  All units are discounted, services are frequently 

quantified by habitat area (often acres), and the time periods are frequently expressed as 

years.  This leads to the use of discounted service-acre-years (DSAYs) as the most 

common scaling unit.  One DSAY of salt marsh habitat is equal to the value of services 

provided by one acre of salt marsh in year 0.  The value of one acre of salt marsh 

provided at some later date has a year - 0 equivalent that is less than one DSAY due to 

the effect of discounting.  Discounting accounts for the public preference of immediate 

service over delayed provision; hence, it reduces the measured importance of future 

benefits.  In other words, there is a higher value given to one acre of fully-functional 

marsh today than at ten years in the future.  Sometimes habitat services are measured not 
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as the presence or absence of habitat, but as changes in the level of habitat function.  For 

example, if a restoration project increases services in one acre of marsh from a level that 

is 50% of full function to a level that is 80% of full function in a given year, then the 

annual value of restored service flows is 0.3 service-acre-years.   

Measuring ecosystem services of coastal marsh habitat 

 Coastal marshes have been acknowledged as being among the most highly-valued 

(per hectare) of Earth‟s ecosystems (Costanza et al. 1997) because their structure and 

function provide essential ecosystem services. They are also among the most vulnerable 

of ecosystems, positioned at the interface between the terrestrial and aquatic realms, 

exposing them to terrestrial run-off high in nutrients, sediments, and contaminants as well 

as aquatic pollutants.  Generally, this habitat is highly productive per unit area, yet 

threatened by land development pressure and habitat alteration and is vulnerable to 

deposition of floating pollutants such as oil.  Coastal marshes of the continental U.S. 

differ regionally as a function of variations in coastal tidal hydrology, geomorphology, 

human encroachment, and biotic province.  The most extensive marshes occur along the 

Gulf of Mexico coast, especially in Louisiana and Florida, and along the Middle and 

South Atlantic coast; the less extensive are along the North Atlantic coast, and marsh 

acreage per unit of ocean shoreline is lowest on the Pacific coast, particularly in Central 

to Southern California (NOAA 1990).  Whereas the highest percentage loss (90%) of 

historic coastal wetlands has occurred in California (NOAA 1990), the greatest losses in 

marsh area have occurred in Louisiana and Florida (Dahl 1990). 
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 Marsh ecosystems are unique in their structure, function and in their contribution 

of services for which few or no alternatives exist.  Marsh plant communities are low in 

species diversity and the typically few dominant species tend to be notably stress tolerant 

(Stout 1984, Bertness and Ellison 1987, Mitsch and Gosselink 2000, Sullivan and Currin 

2000).  North America as a whole is exceptional for the large number of terrestrial 

vertebrate taxa that are endemic or largely restricted to tidal marshes (Greenberg et al. 

2006).  Because of often differences in elevation and subsequent flooding frequency and 

duration, tidal marshes exhibit substantial spatial heterogeneity in ecosystem services. 

Ecosystem services of coastal marshes include the following: (1) high productivity and 

habitat provision supporting the foodweb leading to fish and wildlife (Teal 1962, 

Weisberg and Lotrich 1982, Boesch and Turner 1984, Peterson and Turner 1994, Minello 

et al. 2003), (2) buffer against storm wave damage (Mitsch and Gosselink 2000), (3) 

shoreline stabilization (NCDCM 2006), (4) flood water storage (Mitsch and Gosselink 

2000), (5) water quality maintenance (Stone et al. 1990, Correll et al. 1992), (6) 

biodiversity preservation (Keer and Zedler 2002; Callaway et al. 2003), (7) carbon 

storage and biogeochemical cycling (Mitsch and Gosselink 2000, Chmura et al. 2003, 

Brevik and Homburg 2004, Choi and Wang 2004) and (8) socio-economic benefits 

(Mitsch and Gosselink 2000, MEA 2005).   
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Quantifying ecosystem service loss to marsh injury  

 Here, I review two case studies and primary literature findings of valuation 

methods for quantifying habitat injury and restoration. These methods have already met 

ecological and legal criteria for being effective, efficient and defensible.  The Chalk Point 

case (NOAA et al. 2002) best represents the current HEA method for quantifying injury 

in forms appropriate for scaling compensatory restoration of marsh habitat.  The Bailey 

Trustee Council (2003) case offers insight into how to treat different marsh habitat types 

and associated non-marsh habitat for the purposes of quantifying restoration.  

Subsequently, I consider what metrics best represent the suite of ecosystem services 

provided by marsh habitat, looking ahead to where injury assessment may progress in the 

future. 

Applying HEA: the Chalk Point case 

 The Chalk Point oil spill case illustrates well the current HEA method for 

quantifying coastal marsh injury.  Both marsh vegetation and soil condition were used as 

metrics to capture two categories of ecosystem services provided by marsh habitat and to 

determine degree of injury caused by an oil spill.  Aboveground marsh biomass and 

density reflect a wide range of ecological functions related to primary production, trophic 

support, habitat structure, fish and shellfish production, as well as recreational and 

aesthetic value (Peterson et al. 2008a).  Marsh soils are important for habitat for 

invertebrates, long-term support of marsh plants, and biogeochemical cycling and/ here, 

allows the quantitative measure of a chronic toxic-oil substance.  In this case, injuries to 

about 76 acres of brackish marsh, as well as other connected estuarine habitats, resulted 
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from a spill of No. 2 and No. 6 fuel oil from a ruptured underground pipe in the marsh 

along Swanson Creek, on the shore of Chesapeake Bay, Maryland (NOAA et al. 2002).  

Field surveys along with aerial photography of the marsh demonstrated that 23.4 acres 

were heavily oiled, 12.0 acres moderately oiled and 40.5 acres lightly oiled.  Surveys 

were conducted immediately after the April 2000 spill, then in July and September, and 

again in July 2001.  These provided data on the oiled appearance on the soil surface, 

vegetation, and subsurface of the soil.  Several metrics were established from samples 

taken within 61 1-m
2
 quadrats in both oiled and reference areas. These include: (1) the 

degree of oiling (coverage and thickness), (2) vegetative metrics of marsh grasses (stem 

height and density, percent cover), (3) sediment chemistry (marsh surface soils evaluated 

for levels of total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons 

(PAHs), and (4) abundance and composition of benthic macroinfauna. These data were 

used along with references from previous oil impacts, to estimate the degree of injury and 

time trajectory for full recovery, which were required to compute injury in units of lost 

discounted acre-years (DAYs) of marsh ecosystem services.   

 The marshes were divided into strata reflecting oiling degree and vegetative 

habitat.  Oiling was defined as light, moderate, or heavy.  Light oiling referred to less 

than 10% cover by oil in the initial survey and an oil thickness of < 0.01 cm.  Moderate 

oiling had a coverage of > 10% (average of 60%) and oil thickness > 0.01 cm on marshes 

downstream from the Swanson Creek source area; these areas were analyzed to determine 

the extent of the injury.  For the light oiling category, all wetland types were combined 

into a single category.  For moderate oiling, the two species, Spartina alterniflora and S. 
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cynosuroides, were combined because of very similar responses.  Heavily oiled wetlands 

(those with > 10 % oil cover, > 0.01 cm oil thickness, and location within Swanson 

Creek) were divided into 6 strata, with shoreline and interior areas for each of the three 

dominant vegetation types (Typha spp., S. alterniflora, and S. cynosuroides).  Categories 

of percent service loss for vegetative services and soil services plus the recovery 

trajectory were then estimated for each marsh vegetation stratum using best professional 

judgment.  Best professional judgment is inherently inexact.  Such judgments employ 

site-specific observations and historical literature and are the opinion of experts in a 

given field of study (English et al. 2009).  In most cases, these estimations and supporting 

rationale are peer-reviewed and deemed the best estimate possible.  Lightly oiled 

wetlands (all species combined) were judged to have suffered only a 10% loss in both 

soil and vegetation services, with complete recovery in 6 months.  Moderately oiled 

Spartina marshes were judged to have experienced an initial 50 percent loss in function, 

with an expected recovery of 1 year for vegetation and 3 years for soils. Table 4.1 

summarizes the marsh injury assessment at Chalk Point. 
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Table 4.1. Summary of marsh injury assessment and recovery trajectory for Chalk Point case (summarized from NOAA et al. 

2002) 

Injury  Vegetation type Position in 

habitat  

Estimated service Loss  Predicted 100%  

recovery time  

Lightly oiled    10%  6 months  

Moderately  oiled  Spartina alterniflora &  

S. cynosuroides  

 50%  vegetation: 1 yr 

soils: 3 yrs  

Heavily oiled  S. alterniflora  interior  vegetation: 100%, 50 % @ 1 yr 

soils: 75%, 25% loss @ 5 yrs 

vegetation: 5 yrs 

soils: 10 yrs 

 S. alterniflora  exterior/ edge  vegetation: 100% 

soils: 75%, 20% loss @ 3 yrs 

vegetation: 1 yr 

soils: 5 yrs 

 S. cynosuroides  interior  vegetation: 100%, 50 % @ 1 yr 

soils: 75%, 50% loss  @ 5 yrs 

vegetation: 10 yr 

soils: 20 yrs 

 S. cynosuroides  exterior/ edge vegetation: 100%, 50 % @ 1 yr 

soils: 75%, 40% loss @ 3 yrs 

vegetation: 10 yr 

soils: 10 yrs 

 Typha spp.  interior  vegetation: 100% 

soils: 50%, 20% @ 5 yrs 

vegetation: 1 yr 

soils: 10 yrs  

 Typha spp.  exterior/ edge vegetation: 100% 

soils: 75%, 40% loss  @ 3 yrs 

vegetation: 1 yr 

soils: 10 yrs 
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 Heavily oiled strata were assigned higher levels of service losses for both 

vegetation and soils, with soil recovery rate differences between edge and interior 

locations, based on the reasoning that greater tidal exchange would induce faster 

dissipation of oil in the edge locations (NOAA et al. 2002).  Specifically, heavily oiled 

Typha was assigned a 100% initial service loss to vegetation services in both interior and 

edge zones, with recovery assumed complete in 1 year.  Heavily oiled Typha was 

assigned soil losses of 75% in the edge, recovering to a 40% loss after 3 years and fully 

recovering after 10 years.  Heavily oiled Typha in the interior marsh was assigned soil 

losses of 50% initially, recovering to a 20% loss after 5 years with complete recovery 

after 10 years.  For heavily oiled Spartina alterniflora, initial vegetation service loss was 

assumed to be 100%, with 50% recovery after 1 year and full recovery after 5 years in 

both interior and edge positions.  Soil services were assumed to suffer initial losses of 

75% in both interior and edge marshes, with interior recovering to a level of only 25% 

loss after 5 years and full recovery after 10 years, and edge recovering to a level of 20% 

loss after 3 years and complete recovery after 5 years.  For heavily oiled Spartina 

cynosuroides, initial vegetation service loss was assumed to be 100%, with 50% recovery 

after 1 year and full recovery after 10 years in both interior and edge positions.  Soil 

services were assumed to suffer initial losses of 75% in both interior and edge marshes, 

with interior recovering to a level of 50% loss after 5 years and full recovery by 20 years, 

and edge recovering to a level of 40% loss after 3 years and full recovery after 10 years.  

Vegetation- and soil-related ecosystem service losses were independently estimated from 

this injury and recovery scheme in units of lost DAYs.  Assuming that vegetation and soil 
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services of wetlands are equally important, the joint ecosystem service loss was 

computed by a simple average of the vegetation service loss and the soil service loss in 

DSAYs.   

Lessons from follow-up monitoring 

 Although I describe the Chalk Point approach as the best available HEA example 

for assessing injuries to marsh habitat, it is clear that the quantitative data taken during 

surveys after the spill did not result in an explicitly objective damage assessment; 

portions of the assessment were subjective.  Best professional judgment, informed by 

field data and past knowledge of marsh injuries and recovery, determined the level of lost 

marsh ecosystem services assigned.  The field observations, especially the repeated 

observations of plant health and recovery, fed directly into the assignment of the percent 

initial loss of vegetation services, but this assignment and the recovery trajectory were 

largely a judgment call.  Given that this method represents the best example for assessing 

injury to one of the most commonly injured and environmentally important habitats, 

testing its accuracy should be a priority.  Michel et al. (2008) provides results of follow-

up assessments of how the vegetation and soil recovery had progressed 7 years after 

oiling of the Chalk Point marshes.  This follow-up monitoring took place only in the 

heavily oiled interior portions of the Spartina alterniflora and Spartina cynosuroides 

habitats.  Results can be compared against analogous surveys made just after the spill in 

April 2000, and then in July 2000 and July 2001. 

 Three metrics were recorded during the 2007 resampling (Michel et al. 2008): (1) 

persistence and weathering status of PAHs in soils at 0-10 and 10-20 cm depths, (2) 
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vegetation condition (below-ground biomass, live stem density, and stem height), and (3) 

surficial soil toxicity in amphipod (Ampelisca abdita) bioassays.  The results of soil PAH 

analyses demonstrated that PAH degradation in soils in  areas of both species of marsh 

grass had not decomposed at all in the 7 years since initial sampling after the spill.  

Furthermore, sediment toxicity testing revealed that half the soil samples were still toxic 

after 7 years.  These results appear to conflict with the recovery trajectories assigned 

during injury assessment, which presumed that soil services would recover from 25% in 

2000 to 75% by 2005 in S. alterniflora and 50% in S. cynosuroides after 5 years and to 

100% after 10 and 20 years, respectively.  Vegetation sampling in 2007 revealed that S. 

alterniflora had 37% lower stem densities and 15% lower stem heights and S. 

cynosuroides had 20-35% less belowground biomass, as compared to predictions of 

complete vegetation recovery in S. alterniflora in 5 years and in S. cynosuroides in 10 

years (NOAA et al. 2002).  

 Another telling follow-up on long-term recovery dynamics of oiled salt marshes 

comes from the resampling of Cape Cod marshes over 40 years after the spill from the 

barge Florida.  After 40 years, PAHs were detected at 10-20 cm depths in marsh soils 

and were only moderately degraded.  Furthermore, densities of fiddler crabs (Uca 

pugnax) remained lower on oiled marshes than in controls and crabs displayed behavioral 

differences attributable to possible exposure to toxins.  Specifically, burrowing depths of 

the crabs were only half as deep on the oiled marsh, and crabs on the oiled marsh 

exhibited sluggish responses to threats relative to control crabs (Culbertson et al. 2007).  

The soils of the oiled marsh were highly organic and, similar to those of the interior 
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marsh at Chalk Point, probably largely impervious to oxygen, limiting microbial 

decomposition processes.  The weathering limitations were enhanced by the inability of 

fiddler crabs to dig normally deep burrows because this process of bioturbation can be 

valuable in oxygenating deeper sediments and inducing weathering of buried oil.   

 Evidence from follow-up monitoring at the Chalk Point site and similar evidence 

collected at the oiled Cape Cod marshes suggest that the recovery curves developed for 

the Chalk Point assessment underestimated the length of time required for the recovery of 

oiled marsh.  As predicted by Teal and Howarth (1984), heavy oiling of fine-grained salt 

marsh interiors probably suppresses recovery of at least soil, but also biota for at least 

four decades and possibly many more.  Relatively few long-term follow-up studies exist.  

However, it is apparent that the information provided from such studies is critical in 

providing insight and reference where best professional judgment is heavily weighted.  

Long-term assessments of recovering habitat allow the resource loss and recovery 

evaluation process to become more objective. 

A method to normalize marsh sub-habitat types to estuarine marsh habitat 

 

 The Bailey case (Bailey Trustee Council 2003) involved injury of several sub-

habitats within a marsh system.  The Bailey Waste Superfund Site is a former waste 

disposal facility in Orange County, Texas.  Contaminants [polycyclic aromatic 

hydrocarbons (PAHs), volatile organic compounds (VOCs), and heavy metals] were 

found at high concentrations in the sediments and soils of seven different sub-habitat 

types.  The geographic scope of injury of each sub-habitat was determined by using 

analytical chemistry techniques.  The trustees also decided that the level of ecosystem 
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service loss was 100% in each of these sub-habitats of the marsh system and that these 

losses are permanent.  To facilitate the injury analysis and provide a metric of injury that 

could readily lead to compensatory restoration, the trustees decided to convert service 

acre-year (SAYs) losses of each sub-habitat to functionally equivalent SAYs of the 

brackish marsh sub-habitat because this one was the most extensively injured and it 

provided potentially the highest level of services under nominal or normal conditions.  

The relative per-acre values of each of the seven injured sub-habitat types were 

determined by a “multiple attribute decomposition” process, in which a group of six 

wetland scientists with knowledge of the local ecosystem (three representing the 

Responsible Parties and three the natural resource trustees), rated each of the seven 

habitats from 0 to 10, based upon the perceived value of the joint ecosystem services they 

provide (e.g., primary productivity, habitat value, nutrient export, etc.). Details of the 

ecosystem services used for the multiple attribute decomposition were not specified in the 

report (Bailey Trustee Council 2003).  The means of these scores were used to normalize 

each sub-habitat SAY to an estuarine marsh equivalent (in acres).  Once normalized to 

SAYs of a common habitat type, units are discounted to become DSAYs.  Applying this 

technique, the 3.26 acres of high-marsh habitat that suffered 100% loss, was scaled to 

have equal ecosystem services equivalent to 1.98 acres of healthy brackish marsh.  Table 

4.2 illustrates the method and exhibits the score values used to normalize impacts to all 

sub-habitat types to brackish estuarine marsh losses (Bailey Trustee Council 2003).   

This injury assessment method resembles the habitat conversion approach in that it 

provides a metric by which one (sub)-habitat is converted into another in contemplation 
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of restoration.  I present this approach separately because there are some fundamental 

differences.  Here, all habitats that are converted are considered as sub-habitats of a 

marsh complex not habitats typically recognized as separate.  However, I contend that the 

type or level of ecosystem service differs within sub-habitat type due to differences in 

parameters such as hydrology and geomorphic setting; such abiotic differences are 

reflected by the cover type.  In addition, the “multiple attribute decomposition” method 

depends on best professional judgment by a group of experts.  This metric is 

acknowledged as subjective
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Table 4.2. Method and rank-score values to normalize habitat impacts to brackish 

estuarine marsh, Orange County, Texas (Bailey Trustee Council 2003) 

 

Habitat 

type 

Score 

1 

Score 

2 

Score 

3 

Score 

4 

Score 

5 

Score 

6 

Average 

score 

Normalized 

Average 

Brackish 

tidal marsh 10.0 9.3 10.0 10.0 10.0 9.7 9.833 1.000 

High 

marsh 5.0 6.5 6.0 5.0 7.0 6.3 5.967 0.607 

Freshwater 

marsh 9.0 7.3 7.6 8.0 7.0 7.7 7.767 0.790 

Ponds  6.0 4.5 6.3 6.0 5.0 5.2 5.500 0.559 

Ditch 5.0 3.5 4.6 3.0 5.0 4.3 4.233 0.431 

Upland 2.0 5.3 4.0 4.0 6.0 2.7 4.000 0.407 

Road 0.3 2.0 0.6 0.0 1.0 1.0 0.817 0.083 
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Alternative marsh metrics  

 Many injury assessments of coastal marshes have been motivated by oil spills and 

are limited in the scope of quantitative assessment (Peterson 2008a).  Even in relatively 

substantial spills, field assessments in marshes include only (1) documenting the areas of 

marsh covered by heavy, moderate, and light oiling, (2) measuring stem density and 

height, perhaps also areal cover, of each dominant vascular plant species within each 

oiling intensity category, (3) sampling sediments for chemical (petroleum hydrocarbons  

and PAHs) analyses and depth of contamination, followed by sediment toxicity assays if 

sediment contamination is high and likely to persist and (4) collecting and counting any 

dead animals.  Other common types of marsh injury involve chronic contaminants by 

persistent organic pollutants in Superfund sites, where the contaminants may not cause 

plant injury but necessitate (1) analytic chemistry analyses to compute concentrations of 

toxicants to compare against known biological effects levels and (2) sediment toxicity 

testing and toxicological analysis of growth, reproduction, and mortality impacts at 

higher trophic levels.  Marshes provide many ecosystem services (MEA 2005), so 

reducing metrics to vegetative production of dominant vascular plants and/or sediment 

injury omits many valued processes, such as biogeochemical cycling and habitat 

provisioning.  An important set of questions arises.  Are structural measures of 

aboveground vegetation of vascular plants the most suitable metric for assessing level of 

ecosystem services of salt marshes?  In addition, should other metrics be added to make 

this assessment more complete and indicative of either injury level or duration of injury, 

the two factors needed to estimate service losses?   
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 Peterson et al. (2008a) reviewed several alternative or additional metrics that 

could provide further quantitative insight into other important ecosystem service levels in 

marshes.  These alternative metrics included: (1) routine stratification of marsh habitat 

into edge and interior (as done in the Chalk Point 2002 injury assessment (NOAA et al. 

2002) with separate sampling in each stratum, (2) microphytobenthos abundance, (3) 

cotton-strip decomposition bioassays and other biogeochemical indicators, (4) summation 

of production across consumer trophic levels, and (5) below-ground biomass of vascular 

plants.  Of these, designing marsh sampling to cover edge and interior strata as a routine 

practice would provide much more resolution of injuries and ensure more confident 

compensation because the edge typically has higher primary production and food web 

support than the marsh interior (Anderson and Treshow 1980, Smart 1982, Minello and 

Zimmerman 1992, Baltz et al. 1993, Minello et al. 1994, Cicchetti and Diaz 2000).  The 

use of microphytobenthos abundance, cotton-strip decomposition bioassays and other 

biogeochemical indicators, or the summing of consumer production across trophic levels 

have been deemed by the best professional judgment process as being insufficient as 

solitary metrics, although their inclusion could aid in the holistic estimation of marsh 

ecosystem services (Peterson et al. 2008a).   In addition, although sampling for 

belowground biomass is necessarily destructive and damaging, the addition of this 

information may provide more insight into duration of injury and future productivity.  

However, more basic research will be needed to develop confidence in the belowground 

biomass metric and what it implies.  Peterson et al. (2008a) concluded that the present 

metric of aboveground structural plant density is the best single current indicator of 
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marsh ecosystem services because it correlates with many of the ecosystem services, 

including primary production, structural habitat provision for fish and wildlife, protection 

of the shoreline from waves, interception or sediments, nutrients, and pathogens in 

stormwater flows, aesthetics, carbon storage, and other services.  Perhaps no alternative 

metric relates to so many processes of value in wetlands.  In cases where primary 

production information is important, such as those estimating trophic relationships, a 

non-destructive estimation of aboveground biomass can be obtained by factoring density 

with the height of each macrophyte species (Morris and Haskin 1990, Thursby et al. 

2002).   

Metric-free impact assessment 

 In small oil spills, where the expense of site-specific injury assessments would be 

disproportionately high relative to the expected injury, injury to ecosystem services has 

been estimated on the basis of observed oiling of the marsh with no quantitative injury 

assessment.  Penn and Tomasi (2002) describe the use of oiling categories as a scaling 

tool to categorize levels of effect from the Lake Barre oil spill assessment.  The 

appropriate relationship between oiling categories and service losses has been examined 

in detail in several oil spill assessments, including the Chalk Point (NOAA et al. 2002) 

case, although uncertainty persists.  For the Lake Barre case, Penn and Tomasi (2002) 

describe four recovery trajectories for a salt marsh in Louisiana based on the severity of 

marsh oiling.  The four designations were developed in a collaborative effort between 

public officials and representatives of Texaco, the company responsible for the spill.  The 

experts relied on previous spill-response experience combined with field observations 
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during the first year of recovery.  Information was collected periodically regarding the 

persistence of oiling on plants and soils as well as the condition of plants and the 

presence of invertebrate species in oiled and reference areas.  Other resource services 

such as feeding habitat for birds and spawning habitat for fish were not specifically 

examined, but were assumed to decline and recover in proportion to the observed 

variables.  The estimated level of injury and recovery trajectories are presented in Table 

4.3.   

 In areas of light oiling ecological services were assumed to decline by 10% 

initially, and full recovery was assumed after four months.  As in all categories presented, 

the functional form of the predicted recovery path was linear.  Heavily oiled areas were 

divided into three levels of severity.  Areas with 40 percent and 75 percent initial service 

losses were predicted to recover in 2 years based on extent of recovery in the first year 

following the spill.  For areas of 100 percent service loss where all aboveground 

vegetation was killed, the time required for full recovery was difficult to predict.  

Because the extent of this severely affected area was limited, the parties agreed to a 20-

year recovery horizon that was viewed as a conservative upper-bound estimate.  Recent 

monitoring of the Chalk Point and the lack of recovery of heavily oiled marsh 7 years 

after the spill (Michel et al. 2008) raises questions about how truly conservative this 

assumption of a 20-year recovery is.   

 Clearly, the metric or suite of metrics chosen to best represent the loss of public 

trust resources is somewhat case specific.  Employed metrics need to be appropriate to 

the type of injury or service loss, be considered in the context of the larger ecosystem 
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(i.e., marsh habitat within an estuary), and anticipate changes driven by global climate 

change.  It is evident that current methods seek the optimal pragmatic solution to estimate 

marsh ecosystem services; however, this pragmatism comes at the expense of a just 

compensation of lost public trust resources.  Follow-up monitoring would provide crucial 

information for validating recovery estimates.  In reviewing 37 cases that involved some 

level of habitat injury, I found several cases in which trustee councils suggested follow-

up monitoring to confirm that compensation of lost services of public trust resources 

were achieved.  I found three cases that specified short-term (< 3 years) monitoring to 

validate recovery trajectories, yet I was unable to obtain these reports.  Requiring an 

investment in monitoring the structure and function of injured, restored and created 

habitat could advance the goal of appropriately compensating for damages to public trust 

resources. 
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Table 4.3. Oiling categories and injury to marsh habitat, Lake Barre, LA (summarized 

from Penn and Tomasi 2002) 

 

Category of injury Initial service loss Time to full recovery 

Light oiling 10% 4 months 

Heavy oiling, low  40% 2 years 

Heavy oiling, medium  75% 2 years 

Heavy oiling, high 100% 20 years 
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Quantifying ecosystem service gain by marsh creation and restoration 
 

 Restoring marsh habitat represents an appealing method of compensating for the 

loss of a wide range of different habitats and the ecosystem services that they provide.  

Marsh restoration can even be scaled to replace other types of resource losses, such as for 

guilds like predatory fishes or to individual species populations dependent on marsh 

habitat (TGLO et al. 2001, Bailey Trustee Council 2003, French McCay et al. 2003, 

Peterson 2003, Peterson and Lipcius 2003).  Coastal marshes have been dramatically 

depleted in the U. S. (Dahl 1990, 2006) and worldwide (Nicholls et al. 1999, Ladhar 

2002, MEA 2005), so their reconstruction makes sense from a perspective of restoring 

historical baselines and interconnectivity among estuarine habitats.  The knowledge of 

where marshes have existed in the past provides guidance for where marshes may prosper 

if restored or created.  The methods of S. alterniflora dominated marsh restoration have 

been largely resolved, and there is a substantial literature on how to design and install a 

new salt marsh (e.g., Seneca et al. 1985, Broome et al. 1986, Broome et al. 1998, Warren 

et al. 2002, Wolters et al. 2008).  Coastal marshes are recognized as providers of 

numerous ecosystem services (MEA 2005, Peterson et al. 2008a), so scaling by use of a 

proxy to replace one injured service can be assumed to replace several. Because marsh 

habitat is highly productive and provides numerous ecosystem services per unit area, 

compensatory restoration can be done efficiently on relatively few acres, thus offering 

cost savings to responsible parties of NRDA cases. 

 The most straight-forward scaling of marsh restoration to a service loss involves 

in-kind replacement of lost acre-years of marsh ecosystem services (SAYs).  Such 
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restorations are quite common, especially as mitigation for unavoidable marsh injuries 

during land development (Smith et al. 1995, Peterson et al. 2008a).  Replacement of lost 

marsh by new marsh involves few assumptions because the same habitat is involved on 

both sides of the ledger.  The greatest challenge comes in projecting how rapidly the full 

suite of marsh ecosystem services will return after restoration and what the maximum 

percent of ecosystem services will be at equilibrium (i.e., A = B in Figure 4.1).  The need 

for such knowledge exists especially when marsh restoration is conducted to restore 

marsh habitat itself (in-kind restoration) or some other resource (out-of-kind restoration).  

The most reliable means of ensuring true compensation would be to monitor the injured 

marsh so as to test assumptions about the trajectory of recovery of the injured marsh after 

any primary restoration is conducted, and to monitor the same metric(s) in the newly 

restored marsh as a test of assumptions about development rate of services in both the 

injured and newly created marsh habitat. This is discussed further in hydrogeomorphic 

methodology section below.  Unfortunately, the responsible parties who must fund the 

compensatory restoration dislike uncertainty and wish to settle quickly on restoration 

plans and costs so that incorporating an expensive long-term monitoring of injured and 

restored marshes to ensure quantitative compensation is not generally feasible.  

Contingency funds as a percentage of total compensatory restoration costs are collected 

from settlements of injury liability cases that can provide funding for limited monitoring 

and limited mid-course corrections of restoration projects (English et al. forthcoming).  

Conducting more in-depth monitoring in selected systems to allow improvement of 

estimates of the time course of recovery of ecosystem services in injured and restored 
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marshes can be done and could improve the projections made in future applications of 

restoration scaling for tidal marshes.   

 In a study evaluating created North Carolina marshes between 1 to 28 years of 

age, Craft et al. (2003) found that most ecological attributes reached equivalency relative 

to natural reference marshes within 5 to 15 years after construction and that recovery 

trajectories were predictable.  They propose that created marshes follow three general 

trajectories of recovery and these are associated with hydrological, biological and 

biogeochemical processes.  Most rapid were hydrologic processes such as sedimentation 

and carbon and nitrogen accumulation that developed immediately, due to having been 

graded lower than natural marshes.  Biological process, such as primary production and 

heterotrophic activity, reached equivalence over 5 to 15 years.  Marsh macrophyte and 

microphytobenthos biomass achieved levels found in natural marshes in 12-20 years, 

while invertebrate density reached that of natural marshes in 8 to 13 years.  These 

researchers found stem height to be superior to stem density in predicting aboveground 

biomass and that heterotrophic process were correlated to surficial (0-10 cm) organic 

carbon pools (Craft et al. 2003).  Biogeochemical processes were slowest to reach natural 

equivalence.  Soil organic carbon and nitrogen pool near the surface (0-30 cm) were slow 

to develop in created marshes and only few reached equivalence compared to natural 

marshes even after 28 years.  Carbon, nitrogen and phosphorus stored in macro-organic 

matter was an order of magnitude lower that than in soils and these nutrients accumulated 

in a predictable manner.  Overall, Craft et al. (2003) found that S. alterniflora (above- 

and below- ground biomass) are functional indicators of marsh condition and that soil 
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organic carbon and nitrogen levels correlated significantly with many marsh ecological 

attributes in created marshes.   

 Michel et al. (2008) have monitored both injured and newly constructed (restoring 

previously converted wetlands from agricultural use) salt marshes after the Chalk Point 

oil spill on Swanson Creek, Maryland (NOAA et al. 2002).  Marsh restoration was 

completed in October 2005 and Michel et al. (2008) monitored the development of the S. 

alterniflora and S. cynosuroides marsh areas in replicate locations 2 m from the creek 

margin in September 2007.  Samples of stem density and height of aboveground 

vegetation and belowground biomass density over two depths provided the metrics for 

assessing recovery of marsh ecosystem services, analogous to the injury metrics applied 

earlier.  By comparing the magnitude of each metric in the restored marsh to the levels 

exhibited at that same time in natural unoiled marsh, Michel et al. (2008) produced 

quantitative evidence on which to evaluate the initial assumptions about development 

time of marsh services in the compensatory restoration project.  Spartina alterniflora 

stem heights increased in those two years following marsh creation to 95% of natural 

marsh.  Stem densities were 108% of natural marsh values.  On the other hand, 

belowground biomass reached levels of only 39% of natural marsh at the 0-10 cm depth 

and 7% of natural marsh at 10-20 cm depth.  These metric values compare to projections 

of services development in the restoration scaling for the restored marsh of 50% after 5 

years, 75% after 10 years, and 80% after 20 years (NOAA et al. 2002).  It seems unlikely 

that the belowground services of biogeochemical cycling will achieve these projected 

levels, whereas aboveground services may already have met the anticipated targets well 
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before anticipated dates.  Michel et al. (2008) recognize that the soils at the restoration 

site were very inorganic and impenetrable.  Careful choice or preparation of more 

organic-rich soils may thus be required for future marsh restorations to achieve assumed 

rates of return of all ecosystem services, as evidenced by this work in S. alterniflora 

dominant marshes. 

 One important caution to applying existing metrics to scale the production value 

of marsh creation relates to the vascular plant species involved in the new marsh.  

Essentially all of the data available on trophic support of vascular plants growing in salt 

marshes comes from study of one genus, the Spartina grasses.  Other vascular plants 

contribute meaningfully to salt marsh flora.  Most prominently, these include Juncus 

roemerianus along the Gulf and south Atlantic coasts, many low-relief succulents like 

Salicornia on the Pacific coast, and invasive species like Phragmites spp. and others.  As 

long as the restored marsh consists exclusively of native Spartina (perhaps even just 

Spartina alterniflora, which dominates most scientific studies), then the available 

evidence on primary production and trophic use and transfer efficiencies apply.  In cases 

involving these other vascular plants, use of S. alterniflora information produces great 

uncertainty in actual benefits provided.  Use of local species-specific information would 

make for more confident scaling of the marsh creation.    

 Marsh restoration has also been used in compensatory scaling for other types of 

lost services, both habitat injuries like oiling of intertidal or subtidal flats and injuries to 

resource guilds or species of animals.  For both types of compensation, the scaling is 

more complex and more uncertain than in-kind scaling of lost marsh to restored marsh.  
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The use of salt marsh restoration to compensate for loss of ecosystem services of subtidal 

bay bottom in the Lavaca Bay Trustee Council (2000) case record illustrates the scaling 

that converts one habitat to another.  In this instance based on subjective, but informed 

opinions of experts, who concluded that an acre of fully functional brackish salt marsh 

provided 5 times the ecosystem services as an acre of bay surface bottom.  Consequently, 

the lost SAYs of bay bottom were replaced by salt marsh in a 5 to 1 ratio (Lavaca Bay 

Trustee Council 2000).   

 Newly available habitat conversion ratios based on quantitative productivity ratios 

computed across all three lowest trophic levels (Peterson et al. forthcoming) represent a 

more defensible method of scaling future habitat conversions that lead to marsh 

restoration.  These conversion ratios taken from synthesis of production data across three 

trophic levels suggest that S. alterniflora marsh provides about 1.7 times the per acre 

services as intertidal flat habitat and 2.1 times the services of shallow subtidal habitat 

(Peterson et al. forthcoming).  English et al. (2009) discuss other examples of using 

created marsh habitat to compensate for the service losses of other types of habitat and 

taxonomic resources. 
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Incorporating the hydrogeomorphic approach 

 

 

 The hydrogeomorphic classification (HGM) approach is an accepted functional 

assessment method that can offer insights to the qualification and quantification of marsh 

ecosystem services. This approach is routinely employed by the U.S. Army Corps of 

Engineers in the CWA Section 404 Regulatory Program review process in which wetland 

functions must be assessed (Cole 2006, USDA and NRCS 2008).  In the HGM approach, 

the functions of a given wetland class are generally dictated by its: (1) geomorphic setting 

(position within the landscape), (2) water sources (e.g., tidal inundation, precipitation, 

groundwater and surface flows), and (3) hydrodynamics (e.g., the relative contribution, 

periodicity and flow direction of each water source) (Brinson 1993, Smith et al. 1995).  

Once classified, functional indices of wetland types are determined by variables that 

correspond closely with the level of a wetland attribute (aka. indices or metrics), in a 

given region.  These indices allow the functional assessment of a specified wetland site to 

be compared to reference standard wetlands within the same class.  Hydrogeomorphic-

approach uses reference wetlands and reference standards are assumed to be minimally-

impacted wetlands that are functioning at high or appropriate levels for their class and are 

self-sustaining.  Specification of a set of reference wetlands within a geographical range, 

that includes several to many reference sites, thus enables one to capture the range of 

variation of wetland class within a given region (Christian et al. 2000).  There are two 

sources of variation, natural variability and direct or indirect anthropogenic alterations. 

Establishing reference standard conditions permits the identification of ultimate 

restoration goals (Brinson 1993, Brinson and Rheinhardt, 1996, Christian et al. 2000).  
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The selection of reference sites should account for changes in relative sea-level rise 

(RSLR), as this process continually alters site hydrology, sedimentation and the biotic 

community; such abiotic alterations consequently modify ecosystem structure and 

function (Christian et al. 2000).  NRDA cases could benefit from reference standards in 

locations where such a framework of standards exist.  In addition, the HGM approach 

could be adopted as part of the NRDA process for coastal wetlands.  

 Within each HGM wetland class, indices representing the specific functions 

important and unique for that class, in a given region, is established using regional 

guidebooks, these are readily available on the USACE Environmental Lab website 

(http://el.erdc.usace.army.mil/wetlands/wlpubs.html) and continue to be developed. 

Coastal marshes fall within just one large-scale or general class in the HGM classification 

scheme, tidal fringe wetland:  

 

Tidal fringe wetlands occur along coasts and estuaries and are under the influence 

of sea level. They intergrade landward with riverine wetlands where tidal current 

diminishes and river flow becomes the dominant water source. Additional water 

sources may be groundwater discharge and precipitation. The interface between 

the tidal fringe and riverine classes is where bidirectional flows from tides 

dominate over unidirectional flows controlled by floodplain slope of riverine 

wetlands. Because tidal fringe wetlands frequently flood and water table 

elevations are controlled mainly by sea surface elevation, tidal fringe wetlands 

seldom dry for significant periods. Tidal fringe wetlands lose water by tidal 

exchange, overland flow to tidal creek channels, and evapotranspiration. Organic 

matter normally accumulates in higher elevation marsh areas where flooding is 

less frequent and the wetlands are isolated from shoreline wave erosion by 

intervening areas of low marsh. Spartina alterniflora salt marshes are a common 

example of tidal fringe wetlands (Smith et al. 1995). 

 

 

 Shafer and Yozzo (2002) further divide coastal fringe wetlands into subclasses 

based upon three factors: (1) surface hydrology (regular or irregular flooding), (2) salinity 

http://el.erdc.usace.army.mil/wetlands/wlpubs.html
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(saline, brackish, or fresh) and vegetation type (marsh or swamp forest).  Shafer et al. 

(2007) address a greater level of functional refinement in their regional guidebook for 

coastal marshes in the Mississippi and Alabama region of the Gulf of Mexico. These 

authors describe five functions key to the assessment of this habitat: wave energy 

attenuation, biogeochemical cycling, nekton utilization potential, habitat provision for 

tidal marsh-dependent wildlife and maintenance of the characteristic structure and 

composition of the plant community.  Surprisingly, the basic classification parameters 

(especially hydrodynamics) that dictate marsh ecosystem function have not been 

incorporated well into the HEA or other NRD assessment approaches to my knowledge. 

 While specific metrics of ecosystem service (described earlier) have been utilized 

successfully to assess the degree of habitat injury and recovery, they may not amply 

represent the functional and service of a public trust resource.  In the Chalk Point case 

described above, the interim loss of injured brackish marsh was compensated for by salt 

marsh, based upon the dominant vegetation. Here, the degree of vegetative production 

lost at the injured marsh or gained at the created marsh, was measured relative to a 

nearby reference marsh of like vegetative cover.  However, the different services of 

brackish and salt marsh ecosystems were not elucidated.  Another observation from this 

case is that the created marsh was established on agricultural lands that were likely 

previous converted wetlands, and belowground biomass and soil development were 

slower than professional judgment had anticipated. Nowhere in case study reports did I 

find mention of the hydrology of the injured or created marsh sites. Hydrological factors 

may in part be responsible for the slow establishment of the created marsh. Because 
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hydrological sources and dynamics are key to the function of wetlands and as hydrology 

greatly influences the type and level of service rendered by this public trust resource, 

these factors should be considered in the injury assessment and restoration of coastal 

marsh habitat.  The importance of the geomorphic setting and reference was 

acknowledged and incorporated into assessments at Chalk Point; these are key reasons 

why Chalk Point was noted as an exemplary case of scaling marsh habitat (English et al. 

2009). The use of HGM classification and metrics can aid in replacing like ecosystem 

services (especially biogeochemical cycling) and may aid in the appropriate selection of 

restoration sites.  In addition, the HGM approach offers a standard methodology by 

which the function of restored or created marsh habitat can be efficiently measured, once 

guidelines are established for a given region.  

 While the HGM approach was established to classify wetlands by similar 

functions, it was not intended as a valuation procedure.  King et al. (2000) expanded the 

HGM approach by linking function with valuation.  Although beyond the scope of this 

chapter, it is interesting to note that King et al. (2000) describe the Wetland Value Index 

System that incorporates the value humans place on various wetland ecosystem services. 
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Climate change considerations 

 The cumulative effects of global climate change, especially sea-level rise, would 

be wisely considered in coastal marsh restoration projects.  Accelerated rate of sea-level 

rise is among the most important global climate change phenomena affecting Earth‟s 

coastal zones. The IPCC (2007) estimates that eustatic sea level will rise 0.2-0.6 m by 

2100.  Because coastal marshes occur at the land-sea interface along coastlines with low-

sloping topography they are inherently vulnerable to SLR and coastal erosional processes 

(Hammar-Klose and Thieler 2001).  Still, marshes have persisted through millennia of 

sea level changes by processes such as vertical accretion and horizontal migration across 

the landscape (Redfield 1965, 1972, Orson et al. 1987, Reed 2002).   

 Coastal marsh habitat responds not only to rising sea levels (Reed 1993, Morris et 

al. 2002) and erosion due to increased storminess of a warming global climate (Tiner 

1987, Stevenson et al.1988, Meyer et al. 1997, Erwin et al. 2004), but also a host of 

anthropogenic stressors such as coastal population growth, land use change and habitat 

destruction, pollution, eutrophication, invasive species, etc (Tiner 1987, Dahl 1990).  The 

interaction of these natural and anthropogenic stressors creates new challenges for marsh 

sustainability, many of which have been insufficiently anticipated and poorly managed 

(Cowan et al. 1988, Pethic 2001, Adam 2002, Peterson 2008b).  Even as marsh habitat 

subsists in the presence of accumulating stressors, the level of marsh ecosystem services 

available to society will likely decrease (Zedler and Kercher 2005, Craft et al. 2009).  

Because we are limited in our ability to thwart natural stressors, more aggressive 

protection of marshes would minimize anthropogenic stressors.       
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 Shoreline erosion rates and the landward transgression of marshes in response to 

sea-level rise can be calculated into restoration and compensatory restoration equations to 

ensure that the level of public trust resource is maintained for the expected time period.  

For example, the submersion and erosion components are explicitly parameterized in the 

scaling computation for a proposed restoration site on East Timbalier, a Louisiana barrier 

island (LOSCO 1999).  The coast of Louisiana is losing coastal wetlands due to RSLR 

(Boesch et al. 1994), so consideration of marsh loss in scaling restoration benefits is a 

necessity there because time frames over which the marsh might reasonably persist are 

long enough that RSLR and erosion will realistically influence the functional area of 

marsh that does persist.  Increasing rates of RSLR and shoreline erosion are now a 

concern in many other geographic regions, especially south Florida and North Carolina, 

so loss consideration in marsh restoration scaling is broadly appropriate using locally 

appropriate rates of relative sea level rise.  Furthermore, marsh plants elevate the marsh 

surface by trapping inorganic sediments aboveground (Leonard and Luther 1995, Morris 

et al. 2002, Reed 2002) and by belowground production of roots and rhizomes (Cahoon 

1998, Turner et al. 2000, Blum and Christian 2004, Nyman et al. 2006). Consequently, 

modeling of marsh loss over the time frames required for computing benefits of 

restoration scaling should best address the balance between RSLR and plant-induced 

elevation of the soil surface.  Within the framework of ecosystem state change, high and 

low marsh habitat transgress up-slope and landwards as sea level rises (Brinson et al. 

1995, Christian et al. 2000).  Marsh restoration projects that are created seaward of 

structural barriers like bulkheads are blocked from up-slope transgression and over time 
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frames in excess of about 20 years, based upon present increasing rates of sea-level rise, 

will lose marsh area and thus provide annually decreasing ecosystem services (Brinson et 

al. 1995, Christian et al. 2000, Peterson et al. 2008b).  As sea-level rise accelerates, a net 

loss of coastal marsh habitat is expected (Zedler and Kercher 2005), unless barriers to 

landward transgression are removed in sufficient time for natural transgression processes 

to occur (Brinson et al. 1995, Christian et al. 2000, Titus 2000). Therefore, only those 

restorations in which the upland habitat is in adequate condition and available for up-

slope transgression of the marsh, can marsh habitat be assumed to last more than about 

20-40 years, depending on local rates of relative sea level rise (Brinson et al. 1995, 

Christian et al. 2000, Peterson et al. 2008b).  
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Conclusion 

 The qualification and quantification of coastal marsh ecosystem services has 

precedence largely as a result of federal statutes that mandate conservation of the public 

trust resources that provide these services. Specifically, the Comprehensive 

Environmental Response Compensation and Liability Act (CERCLA), the Oil Pollution 

Act (OPA) and the Clean Water Act (CWA) each require responsible parties to 

compensate for injury through restoration or mitigation that replaced quantitatively the 

losses.  NOAA has been the lead federal agency in overseeing development of this field 

of compensatory restoration, although other federal agencies, several states, and other 

nations in the EU are now playing growing roles.  The development of the conceptual 

basis for the field of restoration scaling has coincided with and facilitated the evolution of 

the fields of natural resource economics and of restoration ecology.  Examples of 

methods to measure such ecosystem services can be derived from cases in which this 

resource has been injured and compensatory restoration achieved. The selection of 

metrics that represent the ecological function of coastal marshes is challenging. 

Determining which metrics best represent lost ecosystem services may vary and are 

dependent upon the nature of the habitat injury.  Macrophyte aboveground density and 

biomass probably estimate the broadest range of ecosystem services (Peterson et al. 

2008a); however, belowground biomass and soil condition also reflect level of ecosystem 

services (Craft et al. 2003, Peterson et al. 2008a). The level of ecosystem services 

rendered by coastal ecosystems will be in part determined by the rate of SLR. Evaluating 

marsh function by considering geomorphic position more accurately assesses level of 
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ecosystem service rendered (Christian et al. 2000, Peterson et al. 2008a).  Developing a 

reference standard establishes realistic end-points for restoration goals that are specific by 

region (Christian et al. 2000).  Metric selection is also influenced by the societal value of 

the ecosystem services that are impaired or lost.  Perhaps our greatest challenge, in my 

opinion, remains the appreciation of ecosystem services by coastal managers, decision 

makers and the general public.   

 One can anticipate some of the new directions in which restoration scaling may 

evolve (Peterson and Lipcius 2003).  Clearly, research is progressing at the interface of 

ecology and economics that not only identifies ecosystem services explicitly but also 

provides quantitative economic valuations for those services (English et al. forthcoming).  

Research developments can lead to more refined metrics of injury and can serve to 

improve the economic valuation of injury (Peterson et al. 2008a), useful in those cases 

where compensation is monetary rather than provided through natural resource 

restoration projects.  As more opportunity to conduct follow-up evaluations of natural 

recovery and ecological development of newly restored habitats, the assumptions 

underlying temporal development of ecosystem functions are directly tested (as in Michel 

et al. 2008).  Follow-up testing and ecological research will improve such assumptions in 

future scaling applications.  Within estuarine and coastal systems, connectivity among 

habitats is great.  This implies that the habitat value for any given habitat type is not fixed 

but varies with landscape setting.  Such spatial proximity considerations would affect 

injury quantification as well as services arising from habitat restorations.  As climate 

change progresses and as the rate of sea-level rise increases, impacts on estuarine habitat 
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functioning are likely to be great, thus modifying how restoration scaling is computed. 

Only when marsh ecosystem services are understood and appreciated, will their value be 

realized.  
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Chapter 5.  SUMMARY AND SYNTHESIS 

  

    

 The intimate relationship between marsh surface elevation (relative to sea level) 

and marsh hydrology (chiefly estuarine inundation) determines the persistence of marsh 

ecosystems and perhaps their ecosystem state.  In this body of work I examined the 

growth response of two dominant marsh macrophytes over a range of inundation periods 

in an effort to better understand how coastal marshes will respond to the increased 

flooding and disturbance inherent from sea-level rise.  Spartina alterniflora Loisel and 

Juncus roemerianus Scheele are the dominant macrophytes in the U.S. southern Atlantic 

and Gulf coasts, where approximately 90% of U.S. coastal marshes persist.  Marsh 

vegetation is likely key to accretion processes, whereby increased aboveground biomass 

baffles floodwaters, thus potentially increasing the degree of sedimentation, and 

increased belowground biomass contributes directly to the elevation of marsh substrate 

(Cahoon 1998, Morris et al. 2002).  Significant trends of decreasing macrophyte 

production with increasing inundation were observed across most response variables 

measured.  The aboveground production patterns of S. alterniflora and J. roemerianus 

responded similarly to inundation period, though I found that S. alterniflora tolerated a 

greater degree of inundation than did J. roemerianus.  Juncus roemerianus demonstrated 

a greater stress response at the astronomically-dominated inundation site (PKS) compared 

to the meteorologically-dominated inundation site (LOLA) at comparable inundation 

periods, as the less energetic site (LOLA) showed significantly greater end-of-season live 

aboveground biomass and less senescence at the end of the 2006 growing season. The 

experimental design employed for this research allowed me to determine the range where 
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inundation thresholds most likely occur. I observed essentially no seasonal increase in S. 

alterniflora biomass at elevations inundated ≥ 67 % (PKS only) and no seasonal increase 

in J. roemerianus biomass at elevations inundated ≥ 42 % and ≥ 53 % at PKS and LOLA, 

respectively.  In addition, S. alterniflora culms and J. roemerianus leaves were largely 

dead at elevations inundated ≥ 92 % and ≥ 42 to 53 %, respectively.  

 The net above- and below- ground growth responses of S. alterniflora and J. 

roemerianus were similar when these species were cultivated in mesocosms individually 

and jointly over a range on inundation periods.  My results showed no significant 

interaction between S. alterniflora and J. roemerianus with inundation period.  In multi-

level co-planted marsh mesocosms, S. alterniflora aboveground material contributed 

proportionally more in net seasonal production over J. roemerianus.  It was unclear 

whether the greater proportional production of S. alterniflora was due to its greater 

inundation tolerance or the natural senescence of J. roemerianus.  I was unable to define 

an interaction between these two dominant marsh macrophytes with duration of 

inundation. 

  My results showed that the macrophyte growth response to inundation in multi-

level marsh mesocosms reflected that of marsh platforms.  Edaphic conditions likely 

differed between the mesocosms and platform for a given inundation period, as high 

elevation mesocosm rows experienced greater drainage and low elevation rows 

experienced less drainage, compared to the marsh platform.  However, this difference 

allowed me to consider the vertical and lateral effect of hydraulic head (e.g., that inherent 

with increasing sea levels) present in marsh interior zones which may experience 
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hydraulic isolation. Site differences in tidal range (tidal pumping) and its affect on 

edaphic conditions may also explain peak biomass occurring at different elevations 

relative to MSL.  We propose that determining inundation period, rather than elevation, 

may allow more accurate predictions of macrophyte production. 

 The use of multi-level marsh mesocosms has improved our understanding of 

macrophyte response to inundation.  Within marsh habitat, macrophyte populations 

experience two divergent gradients of aerobic-to-anaerobic edaphic conditions with 

estuarine inundation being a subsidy-stress phenomenon.  At some midpoint frequencies, 

estuarine inundation provides an energy subsidy to marsh interior zones, releasing 

macrophytes from hydraulic isolation, altering edaphic conditions (decreasing soil toxins 

and salinity) and aerating soils with tidal pumping and providing a sediment source.  At 

an optimum degree of inundation, macrophyte production is greatest.  Greater inundation 

frequency becomes a stressor to marsh macrophytes, saturating marsh soils and altering 

edaphic conditions (increasing anoxia) to a point at which inundation frequency causes 

individual plants to die.  In addition, I propose that inundation can elicit a stress response 

in marsh macrophytes (i.e., S. alterniflora) triggering macrophytes to grow taller.  An 

increase in height benefits frequently submerged macrophytes by creating more leaf area 

that remains aerial, allowing some degree of photosynthesis to continue during 

submergence; subsequently, oxygen is transported to aerenchyma tissue in the roots and 

thus provides a mechanism to aerate marsh soils (Howes et al. 1986).  More work is 

needed to examine this mechanism as it relates to macrophyte height, although others 
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(Laan and Blom 1990, Blom and Voesenek, Insausti et al. 2001) have observed a shoot 

elongation response to submergence in other species. 

 My results contribute to a growing body of evidence that shows that belowground 

biomass is positively correlated with elevation (Blum 1993, Widdows et al. 2008).  Such 

observations suggest that the greatest macro organic matter contributions are made at 

higher elevations and that these contributions account for a greater proportion of vertical 

accretion in the high as compared to the low marsh zone.  This bioaccretion process may 

be especially critical for marshes to keep pace with sea level rise in estuaries where little 

inorganic sediment is available. 

 Because both above- and below- ground biomass decreased with increasing 

inundation, I predict that similar marsh ecosystems in North Carolina will be unable to 

accrete sufficiently to maintain elevation relative to accelerating rising sea levels.  Marsh 

ecosystems accrete vertically via the processes of sedimentation and bioaccretion.  As 

marsh macrophytes respond to increased inundation, consequential decreases in 

aboveground biomass will likely decrease the ability of marsh macrophytes to entrap 

estuarine sediments (as per Morris et al. 2002).  Likewise, decreases in belowground 

biomass will decrease bioaccumulation contributions to accretion.  A reduction in above- 

and below- ground biomass results in a positive feedback of a lower elevation relative to 

sea level, greater inundation and a further reduction in macrophyte biomass.  Hence, it 

appears that if the extent of North Carolina marshes are to persist, we must allow for their 

landward transgression where geomorphologically feasible.   
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 Juncus roemerianus showed poor resilience to both pulsed and repeated press 

disturbance.  In marsh mesocosms, J. roemerianus illustrated a stress response within the 

more energetic, astronomically-dominated inundation regime, as noted above.  The 

response variables that differed significantly between the two sites occurred at elevations 

most likely to receive frequent wind-driven wave energy.  The difference in wave energy 

was considered to be significant between sites because the fetch length experienced by 

the mesocosms at PKS was greater by a factor of thirty.  In experimental plots on the 

marsh platform, the percent cover of J. roemerianus was significantly reduced after a 

pulse disturbance (cutting), which simulated a fire or devegetation event; the reduction in 

cover was significant within both inundation regimes.  The percent cover of S. 

alterniflora significantly increased in disturbed J. roemerianus plots established along the 

S. alterniflora - J. roemerianus interface.  The sensitivity of J. roemerianus to repeated 

press (wave action) and pulse (cutting) disturbance could explain observations of J. 

roemerianus-dominated marshes being fringed by S. alterniflora in astronomically-

dominated estuaries.  This also explains contrasting observations of J. roemerianus 

occurring along the estuarine edge in meteorologically-dominated marshes, where overall 

energy regimes are relatively lower.  Spartina alterniflora will likely replace J. 

roemerianus in shore zones where these macrophytes occur and where energy regimes 

increase in response to global climate change. 

 Ecosystem disturbances can be viewed as events or processes that reset the 

successional „clock‟ (Sousa 1984, Turner et al. 2003).  The findings in chapters 2 and 3 

support the conceptual model of ecosystem state change proposed by Brinson et al. 
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(1995) and Christian et al. (2000) in which the effects of a press disturbance (e.g., sea-

level rise) may be less evident than the effects of pulsed disturbances (e.g., wrack 

deposition, fire, wave action), which may push an ecosystem state beyond the threshold 

of returning to the same state.  However, it is the press disturbance that moves the 

threshold closer to the tipping point and the pulsed disturbance that ultimately results in a 

change of ecosystem state (Brinson et al. 1995, Christian et al. 2000).  Sea-level rise is a 

press disturbance (e.g., increased inundation) that continually shifts the tolerance range of 

organisms in a landward direction.  Under a scenario of accelerating SLR, organisms may 

be displaced further landward with each pulsed disturbance (e.g., storm, fire, wrack 

deposition).  Perhaps such cumulative disturbances serve as a mechanism that drives the 

transgression process on a landscape scale.  Understanding the role of disturbance type, 

frequency and severity, as well as that of cumulative effects, is an area of research 

requiring more attention given the anticipated impacts of global climate change.   

  The quantification of coastal marsh ecosystem services has been achieved broadly 

by methodologies utilized by the Natural Resource Damage Assessment process.  This 

method currently employs only a few metrics to assess the ecosystem services rendered 

by an entire ecosystem type.  Peterson et al. (2008) have evaluated alternatives to the 

current method for measuring marsh ecosystem services and state that the density of 

aboveground vegetation is the most developed, single quantitative metric to date.  

Macrophyte aboveground density corresponds to many of the ecosystem services 

provided by marshes, including primary production, structural habitat provision for fish 

and wildlife, protection of the shoreline from waves, interception of sediments, nutrients, 
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and pathogens in stormwater flows, aesthetics, carbon storage, and other services.  It is 

apparent that more research is needed to develop further metrics, or a suite of metrics, 

that comprehensively reflect marsh ecosystem functions and the services rendered to 

human societies.  Synthesis of current methods used to assess ecosystem services found 

that U.S. statutes provide for the compensation of loss of public trust resources, yet 

current metrics for ecosystem services serve as incomplete proxies of ecosystem function 

and condition.  We have much to learn regarding the manner in which ecosystem 

functions are translated into the ecosystem services that are exploited by society.  

Additional research and education are needed if we are to understand the relevance of 

ecosystem services and their benefit to society.    

 The type and level of ecosystem service provided by a given habitat remains in 

constant flux, as ecosystem components respond to a dynamic environment and to one 

another.  To a degree, such dynamics (e.g., inundation regime) serve to homogenize 

marsh characteristics across geographic scales, limiting the range of organisms present 

and defining basic community structure. Yet, dynamics can also be somewhat site 

specific and hence, challenge our ability to discern appropriate reference and a 

representative assessment of ecosystem function.  For example, aboveground density has 

been found to serve as the best single proxy of marsh ecosystem services (Peterson et al. 

2008), as described above.  Marsh macrophyte density and biomass may be similar 

between two marshes despite the fact that they occur within different inundation regimes, 

as was the case between PKS and LOLA.  Faunal use, trophic relationships and 

biogeochemical cycling would likely differ by inundation regime as well (Voss 2006, 



 226 

 

Craft et al. 2009).  One might expect the impact of an oil spill to be greater at the LOLA 

marsh, compared to PKS marsh, due to the lack of relative flushing that occurs at the 

LOLA site.  This study joins others to suggest that several aspects of marsh habitat 

function differently between sites, even when cursory assessments (e.g., species presence 

and biomass density) may indicate their similarity.  Assumptions that link ecological 

function of unaltered and altered marsh habitat based on only few parameters should be 

derived cautiously and need to be considered within the context of the larger ecosystem. 

 Coastal marsh ecosystems are well adapted to the dynamics inherent to the coastal 

zones in which they occur.  The fact that coastal marsh ecosystems have persisted for 

millennia and that they are well adapted to an array of disturbances bodes well for their 

fate, so long as human interventions do not hinder in the evolution of these ecosystems.  

My research suggests that at least some coastal marsh systems will be challenged in their 

ability to accrete vertically at a rate sufficient to maintain elevation relative to accelerated 

rising sea levels; hence, the landward transgression of these ecosystems is likely key to 

their persistence.  Also interesting is conceiving how coastal ecosystems will manage the 

increase in energy resulting from the warming of Earth.  The heating and cooling of our 

planet has occurred repeatedly on Earth‟s geological time-scale; however, the 

accelerating rate of change that our planet is now experiencing has not occurred during 

the existence of humankind (Hoegh-Guldberg et al. 2007, IPCC 2007).  With 

approximately 10% of global human populations living less than 10 m above sea level 

(McGranahan et al. 2007), interactions of biotic (including anthropogenic) and abiotic 
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processes at this marine-terrestrial interface will surely prove to be extraordinary and 

challenge our goal of sustainability within the coastal zone. 
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Appendix A.  Demographics of Spartina alterniflora cultivated in pots in multi-level marsh 

planter at Pine Knoll Shores, NC in September 2006 (each pot = 0.01818 m2) [ns = no sample] 
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1 1  ns ns  ns  ns  ns  ns  ns 2.69 

2 1 244.1 75.2 319.3 13 3.53 1.58 5.11 33.68 

3 1 220.7 48 268.7 13 3.08 1.21 4.29 50.95 

4 1 167.2 41.6 208.8 10 2.37 1.07 3.44 61.93 

5 1  ns ns  ns  ns  ns  ns  ns 65.73 

6 1 168.6 20.4 189 7 0.6 0.26 0.86 53.94 

7 2  ns ns  ns  ns  ns  ns  ns 71.84 

8 2 202.6 36.8 239.4 7 4.33 3.64 7.97 66.18 

9 2 362.7 62 424.7 23 6.94 2.78 9.72 53.95 

10 2  ns ns  ns  ns  ns  ns  ns 49.87 

11 2  ns ns  ns  ns  ns  ns  ns 68.73 

12 2  ns ns  ns  ns  ns  ns  ns 40.23 

13 3  ns ns  ns  ns  ns  ns  ns 49.72 

14 3  ns ns  ns  ns  ns  ns  ns  ns  

15 3  ns ns  ns  ns  ns  ns  ns 78.77 

16 3  ns ns  ns  ns  ns  ns  ns 50.89 

17 3  ns ns  ns  ns  ns  ns  ns 98.27 

18 3  ns ns  ns  ns  ns  ns  ns 60.52 

19 4  ns ns  ns  ns  ns  ns  ns 113.70 

20 4  ns ns  ns  ns  ns  ns  ns 65.83 

21 4  ns ns  ns  ns  ns  ns  ns 70.70 

22 4  ns ns  ns  ns  ns  ns  ns 103.81 

23 4 520.7 48.9 598.9 18 12.83 2.02 14.85 44.05 

24 4  ns ns  ns  ns  ns  ns  ns 306.14 

25 5  ns ns  ns  ns  ns  ns  ns 85.60 

26 5 322.2 52.6 374.8 20 6.04 1.72 7.76 120.78 

27 5  ns ns  ns  ns  ns  ns  ns 57.61 

28 5  ns ns  ns  ns  ns  ns  ns 110.41 

29 5  ns ns  ns  ns  ns  ns  ns 133.58 

30 5 466.5 378.2 844.7 30 13.48 10.35 23.83 127.89 

31 6 139.5 282.7 422.2 21 2.76 5.59 8.35 99.94 

32 6  ns ns  ns  ns  ns  ns  ns 123.06 

33 6  ns ns  ns  ns  ns  ns  ns 80.25 

34 6 508.5 104.8 581.9 16 16.65 2.15 18.8 160.59 

35 6 442.4 163.3 605.7 19 11.07 3.47 14.54 61.07 

36 6  ns ns  ns  ns  ns  ns  ns 113.24 
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Appendix B. Demographics of Juncus roemerianus cultivated in pots cultivated in multi-

level planters at Pine Knoll Shores, NC in September 2006 (each pot = 0.01818 m
2
)  
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4 1 0 124.2 124.2 7.0 0.00 2.77 2.77 38.55 
5 1 0 291.1 291.1 20.0 0.00 8.31 8.31 118.68 
6 1 0 255.3 255.3 15.0 0.00 5.19 5.19 97.03 
7 2 0 250.9 250.9 14.0 0.00 6.96 6.96 48.94 
8 2 0 89.7 89.7 7.0 0.00 2.73 2.73 32.07 
9 2 0 201.3 201.3 13.0 0.00 6.37 6.37 77.66 

10 2 65.3 567.6 632.9 33.0 0.63 10.56 11.19 168.41 
11 2 0 205 205 11.0 0.00 6.21 6.21 53.25 
12 2 0 708.5 708.5 37.0 0.00 19.88 19.88 91.06 
13 3 0 128.8 128.8 9.0 0.00 2.60 2.60 60.85 
14 3 84.1 479 563.1 18.0 1.37 10.15 11.52 4.79 
15 3 72.2 277 349.2 16.0 0.84 5.09 5.93 112.38 
16 3 272.3 860.9 1133.2 32.0 3.56 15.21 18.77 120.28 
17 3 281.6 1329.3 1610.9 48.0 4.86 23.72 28.58 64.73 
18 3 201.5 1018.8 1220.3 32.0 3.50 21.71 25.21 67.70 
19 4 392.3 1241.06 1633.36 43.0 6.30 27.35 33.65 79.98 
20 4 224.4 1027.7 1252.1 55.0 2.91 20.41 23.32 93.85 
21 4 82.9 743.6 826.5 31.0 8.63 10.69 19.32 74.44 
22 4 74.9 130 204.9 7.0 1.01 2.83 3.84 42.79 
23 4 48.2 225.7 273.9 14.0 0.59 3.84 4.43 78.58 
24 4 229.1 513 742.1 33.0 2.87 6.58 9.45 98.86 
25 5 579.5 1209.6 1789.1 54.0 7.82 17.12 24.94 161.40 
26 5 965.8 1370.3 2336.1 45.0 14.71 20.38 35.09 77.31 
27 5 269.5 386.8 656.3 29.0 1.86 8.71 10.57 96.68 
28 5 352 753.5 1105.5 24.0 7.49 8.21 15.70 94.14 
29 5 727.3 1091.1 1818.4 41.0 9.81 8.80 18.61 58.66 

30 5 153.3 373.2 526.5 18.0 2.64 7.02 9.66 107.75 
31 6 245.3 452.5 697.8 19.0 2.85 7.07 9.92 165.07 
32 6 290.4 485.3 775.7 29.0 3.76 12.64 16.40 157.97 
33 6 446.61 517.89 964.5 26.0 6.23 5.70 11.93 87.77 
34 6 803.8 1890.36 2694.16 73.0 10.53 27.56 38.09 156.70 
35 6 750.4 1155.5 1905.9 46.0 11.59 15.87 27.46 169.21 
36 6 88.1 314.5 402.6 22.0 1.08 5.27 6.35 109.08 
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Appendix C.  Demographics of Juncus roemerianus cultivated in pots in multi-level 

marsh planter at Lola, NC in September 2006 (each pot = 0.01818 m
2
) 
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30 5 122.6 529.5 652.1 26 1.64 5.74 7.38 52.36 
31 6 1729.3 2152.1 3881.4 30 4.11 6.14 10.25 108.93 
32 6 1729.3 2152.1 3881.4 88 21.06 12.16 33.22 125.94 
33 6 1068.8 1942.9 3011.7 54 13.15 11.90 25.05 101.77 
34 6 528.9 846.01 1374.91 42 3.73 8.61 12.34 95.40 
35 6 500.1 928.6 1428.7 38 5.29 10.81 16.10 84.42 
36 6 134.5 383 517.5 24 1.42 4.64 6.06 118.35 
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Appendix D.  Demographics of Spartina alterniflora in elevational-equivalent plots at 

Pine Knoll Shores, NC in September 2006 (each sample = 0.01818 m
2
)   [note: 

hundredths place number correlates to elevational-equivalent planter row] 
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201 285.7 75.5 361.2 12 7.09 0.48 7.57 

202 82.6 0 82.6 3 2.5 0 2.5 

203 326.2 86.2 412.4 16 8.57 1.41 9.98 

204 202.1 43.2 245.3 8 6.19 0.28 6.47 

205 271.9 89.1 361 12 7.82 2.34 10.16 

301 219.8 88.1 307.9 8 10.23 0.79 11.02 

307 185.4 156.5 341.9 9 7.76 3.68 11.44 

401 350 59.4 409.4 10 8.25 1.81 10.06 

404 230.6 404.7 635.3 17 4.26 6.12 10.38 

405 195 213.6 408.6 7 8.22 5.22 13.44 

406 40.6 10.6 51.2 3 1.64 0.15 1.79 

407 133.1 19.4 152.5 4 3.66 0.32 3.98 

408 115.7 57.9 173.6 4 5.75 2.16 7.91 
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Appendix E.  Demographics of Juncus roemerianus in elevational-equivalent plots at 

Pine Knoll Shores, NC in September 2006 (each sample = 0.01818 m
2
)   [note: 

hundredths place number correlates to elevational-equivalent planter row] 

 

Sample 

Total 

leaf  

length 

green 
(cm/sample) 

Total 

leaf  

length 

brown 
(cm/sample) 

Total 

leaf 

length 
(cm/sample) 

Total 

No. of 

Leaves 
(sample) 

Live leaf 

wt. 
(gdw/sample) 

Dead leaf 

wt.(gdw/sample) 

Total leaf 

weight  
(gdw/sample) 

301 1018.2 640.5 1658.7 23 16.16 4.42 20.58 

302 708.8 464.9 1173.7 20 6.53 8.9 15.43 

303 550.3 381.3 931.6 18 10.47 5.76 16.23 

304 359.2 314.9 674.1 13 3.9 1.43 5.33 

305 919.7 621.9 1541.6 26 11.57 5.03 16.6 

306 992 1465.1 2457.1 45 14.37 19.14 33.51 

401 ns ns ns ns ns ns ns 

402 ns ns ns ns ns ns ns 

403 474.9 161 635.9 10 5.96 1.43 7.39 

404 676.8 231.3 908.1 13 8.68 1.53 10.21 

405 ns ns ns ns ns ns ns 

406 ns ns ns ns ns ns ns 
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Appendix F.  Demographics of Juncus roemerianus in elevational-equivalent plots at 

Lola, NC in September 2006 (each sample = 0.01818 m
2
)   [Samples obtained 

from three separate plots, all elevationally-equivalent to row 4 of respective 

planter] 
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401 512.4 956 1468.4 22 6.37 10.58 16.95 

402 692.2 692.9 1385.1 21 7.69 8.64 16.33 

403 934.7 537.8 1472.5 24 11.95 6.09 18.04 

404 349.2 944.8 1294 30 3.07 12.67 15.74 

405 543.2 952.5 1495.7 31 5.12 11.94 17.06 

406 1180.3 700 1880.3 34 17.92 19.14 27.06 

451 411.2 353.3 764.5 16 7.41 3.82 11.23 

452 1317.1 626.2 1943.3 30 5.16 6.92 12.08 

453 964.3 1159.9 2124.2 30 17.97 7.83 25.8 

454 779.2 698.7 1477.9 24 9.1 11.02 20.12 

455 871.3 1134.6 2005.9 33 12.94 7.51 20.45 

456 699.1 627.2 1326.3 23 7.55 8.45 16 

457 1438 922 2360 41 17.51 6.45 23.96 

4001 345.8 433.4 779.2 10 2.96 3.33 6.29 

4002 823.2 1161.7 1984.9 25 8.63 10.83 19.46 

4003 634.7 607.4 1242.1 20 5.4 5.81 11.21 

4004 563.7 1336.6 1900.3 30 6.48 11.04 17.52 

4005 381.3 215 596.3 10 2.21 1.07 3.28 

4006 500.2 650 1150.2 14 7.16 3.74 10.9 
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Appendix G.  Demographics of Spartina alterniflora and Juncus roemerianus co-planted in pots in multi-level marsh planter at 

Pine Knoll Shores, NC in September 2007 (each pot = 0.01818 m
2
) [ns = no sample] 
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1 1 0.0 164.5 164.5 16 0.00 5.00 5.00 0.0 0.0 0.0 0 0 0.00 0.00 0.00 62.57 

2 1 0.0 20.0 20.0 5 0.00 0.52 0.52 0.0 0.0 0.0 0 0 0.00 0.00 0.00 ns 

3 1 0.0 111.0 111.0 11 0.00 3.25 3.25 0.0 0.0 0.0 0 0 0.00 0.00 0.00 44.96 

4 1 0.0 38.0 38.0 4 0.00 1.49 1.49 0.0 0.0 0.0 0 0 0.00 0.00 0.00 56.75 

5 1 0.0 184.0 184.0 15 0.00 6.54 6.54 0.0 0.0 0.0 0 0 0.00 0.00 0.00 39.79 

6 1 0.0 40.5 40.5 3 0.00 1.15 1.15 0.0 0.0 0.0 0 0 0.00 0.00 0.00 38.78 

7 2 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

8 2 0.0 28.5 28.5 2 0.00 0.83 0.83 0.0 0.0 0.0 0 0 0.00 0.00 0.00 38.72 

9 2 0.0 138.0 138.0 14 0.00 4.22 4.22 0.0 0.0 0.0 0 0 0.00 0.00 0.00 54.78 

10 2 0.0 8.5 8.5 3 0.00 0.12 0.12 0.0 0.0 0.0 0 0 0.00 0.00 0.00 33.92 

11 2 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 90.40 

12 2 0.0 111.5 111.5 18 0.00 5.22 5.22 0.0 0.0 0.0 0 0 0.00 0.00 0.00 28.61 

13 3 0.0 78.5 78.5 9 0.00 4.85 4.85 0.0 0.0 0.0 0 0 0.00 0.00 0.00 46.87 

14 3 0.0 46.5 46.5 3 0.00 1.36 1.36 0.0 0.0 0.0 0 0 0.00 0.00 0.00 58.54 

15 3 0.0 75.5 75.5 7 0.00 4.47 4.47 0.0 0.0 0.0 0 0 0.00 0.00 0.00 24.33 

16 3 0.0 30.0 30.0 3 0.00 0.79 0.79 106.0 0.0 106.0 18 4 1.52 0.00 1.52 25.27 

17 3 0.0 16.0 16.0 1 0.00 0.93 0.93 0.0 0.0 0.0 0 0 0.00 0.00 0.00 44.04 

18 3 0.0 50.5 50.5 3 0.00 1.46 1.46 0.0 0.0 0.0 0 0 0.00 0.00 0.00 23.08 
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Appendix G (cont‟d).  Demographics of Spartina alterniflora and Juncus roemerianus co-planted in pots in multi-level marsh 

planter at Pine Knoll Shores, NC in September 2007 (each pot = 0.01818 m
2
) [ns = no sample] 
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19 4 0.0 150.5 150.5 14 0.00 3.90 3.90 0.0 0.0 0.0 0 0 0.00 0.00 0.00 31.65 

20 4 0.0 193.0 193.0 12 0.00 17.03 17.03 228.0 22.0 250.0 62 11 5.88 0.00 5.88 47.00 

21 4 0.0 46.0 46.0 7 0.00 1.11 1.11 113.5 11.5 125.0 31 8 2.09 0.00 2.09 28.58 

22 4 0.0 44.5 44.5 3 0.00 2.51 2.51 148.0 6.0 154.0 26 5 3.77 0.00 3.77 22.84 

23 4 0 298.5 298.5 11 0.00 12.26 12.26 133.5 9.0 142.5 28 6 3.00 0.00 3.00 51.61 

24 4 0.0 33.0 33.0 1 0.00 1.72 1.72 76.0 51.0 127.0 23 5 1.64 0.69 2.33 16.64 

25 5 0.0 82.5 82.5 4 0.00 3.79 3.79 93.0 9.5 102.5 35 7 2.14 0.00 2.14 12.60 

26 5 0.0 137.5 137.5 8 0.00 4.59 4.59 145.0 0.0 145.0 46 8 4.30 0.00 4.30 52.01 

27 5 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

28 5 0.0 243.5 243.5 15 0.00 5.24 5.24 281.5 48.0 329.5 86 17 6.26 0.37 6.63 62.10 

29 5 0.0 360.0 360.0 21 0.00 9.81 9.81 114.5 0.0 114.5 37 7 2.41 0.00 2.41 21.64 

30 5 0.0 306.5 306.5 15 0.00 5.37 5.37 36.0 0.0 36.0 13 2 0.88 0.00 0.88 33.81 

31 6 107.0 446.0 553.0 14 1.18 4.30 5.48 141.5 0.0 141.5 36 6 3.77 0.42 4.19 67.30 

32 6 13.5 488.0 501.5 17 0.31 12.81 13.12 243.0 45.0 288.0 76 14 8.77 1.19 9.96 88.95 

33 6 0.0 336.5 336.5 15 0.00 6.29 6.29 0.0 0.0 0.0 0 0 0.00 0.00 0.00 62.74 

34 6 5.5 101.0 106.5 4 0.00 2.06 2.06 220.5 20.0 240.5 78 13 5.89 0.00 5.89 61.41 

35 6 0.0 338.5 338.5 9 0.00 7.56 7.56 62.5 0.0 62.5 25 4 0.91 0.00 0.91 30.44 

36 6 0.0 426.0 426.0 14 0.00 6.44 6.44 91.5 10.5 102.0 36 7 3.03 0.38 3.41 73.91 
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Appendix H.  Demographics of Spartina alterniflora and Juncus roemerianus co-planted in pots in multi-level marsh planter at 

Lola, NC in September 2007 (each pot = 0.01818 m
2
) [ns = no sample] 
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1 1 6.0 93.0 99.0 7 0.00 7.89 7.89 0.0 0.0 0.0 0 0.00 0.00 0.00 43.44 

2 1 0.0 45.0 45.0 3 0.00 10.02 10.02 0.0 0.0 0.0 0 0.00 0.00 0.00 24.55 

3 1 0.0 249.0 249.0 14 0.00 7.75 7.75 32.5 0.0 32.5 1 0.22 0.00 0.22 22.18 

4 1 0.0 97.5 97.5 8 0.00 4.31 4.31 0.0 0.0 0.0 0 0.0 0.0 0.0 51.13 

5 1 0.0 55.5 55.5 6 0.00 3.10 3.10 0.0 0.0 0.0 0 0.0 0.0 0.0 32.65 

6 1 0.0 67.5 67.5 8 0.00 5.77 5.77 0.0 0.0 0.0 0 0.0 0.0 0.0 48.62 

7 2 123.5 293.5 417.0 12 0.99 8.62 9.61 111.0 52.0 163.0 5 2.88 0.51 3.39 61.98 

8 2 0.0 0.0 0.0 0 0.00 0.00 0.00 260.5 32.5 293.0 13 6.20 8.69 14.89 32.97 

9 2 0.0 51.5 51.5 1 0.00 0.96 0.96 353.0 30.0 383.0 17 7.33 0.00 7.33 48.61 

10 2 0.0 0.0 0.0 0 0.00 2.99 2.99 446.5 7.0 453.5 21 11.94 0.34 12.28 84.96 

11 2 0.0 0.0 0.0 0 0.00 1.14 1.14 250.5 0.0 250.5 10 5.26 0.04 5.30 40.64 

12 2 0.0 0.0 0.0 0 0.00 7.40 7.40 331.0 24.0 355.0 19 5.37 0.70 6.07 67.51 

13 3 362.5 490.5 853.0 19 5.10 11.52 16.62 297.5 15.5 313.0 15 5.16 1.07 6.23 61.46 

14 3 485.5 643.5 1129.0 26 7.20 4.72 11.92 231.5 0.0 231.5 8 4.78 0.00 4.78 86.10 

15 3 248.0 861.0 1109.0 21 4.91 11.02 15.93 321.5 64.0 385.5 15 7.17 4.05 11.22 55.07 

16 3 136.0 484.0 620.0 24 1.98 5.55 7.53 202.0 0.0 202.0 8 7.02 0.00 7.02 70.66 

17 3 0.0 22.5 22.5 2 0.00 2.82 2.82 406.0 24.0 430.0 13 11.25 1.99 13.24 65.58 

18 3 107.0 72.5 179.5 4 1.14 0.86 2.00 412.0 0.0 412.0 12 19.06 3.52 22.58 85.68 



 240 

 

 

                 

 

 

 

                

Juncus roemerianus Spartina alterniflora 

both 

spp. 

P
o

t 

R
o

w
 

T
o

ta
l 

le
af

  

le
n

g
th

 g
re

en
 

(c
m

/p
o

t)
 

T
o

ta
l 

le
af

  

le
n

g
th

 b
ro

w
n

 

(c
m

/p
o

t)
 

T
o

ta
l 

le
af

 

le
n

g
th

 

(c
m

/p
o

t)
 

T
o

ta
l 

N
o

. 
o

f 

le
av

es
 (

p
o

t)
 

L
iv

e 
le

af
 w

t.
 

(g
d

w
/p

o
t)

 

D
ea

d
 l

ea
f 

w
t.

 

(g
d

w
/p

o
t)

 

T
o

ta
l 

le
af

 

w
ei

g
h

t 
 

(g
d

w
/p

o
t)

 

T
o

ta
l 

cu
lm

 

le
n

g
th

 g
re

en
 

(c
m

/p
o

t)
 

T
o

ta
l 

cu
lm

 

le
n

g
th

 b
ro

w
n

 

(c
m

/p
o

t)
 

T
o

ta
l 

cu
lm

 

le
n

g
th

 

(c
m

/p
o

t)
 

T
o

ta
l 

N
o

. 
o

f 

cu
lm

s 
(p

o
t)

 

L
iv

e 
cu

lm
 w

t.
 

(g
d

w
/p

o
t)

 

D
ea

d
 c

u
lm

 

w
t.

 (
g

d
w

/p
o

t)
 

T
o

ta
l 

cu
lm

 

w
ei

g
h

t 
 

(g
d

w
/p

o
t)

 
T

o
ta

l 
m

ac
ro

-

o
rg

an
ic

 

m
at

te
r 

(a
fd

g
/p

o
t)

 

19 4 243.0 396.5 639.5 13 4.84 12.27 17.11 31.5 0.0 31.5 7 1 0.87 0.00 0.87 

20 4 428.0 419.5 847.5 18 8.79 4.99 13.78 237.5 26.0 263.5 9 7.58 0.85 8.43 106.62 

21 4 483.0 419.0 902.0 16 2.59 6.99 9.58 271.5 169.0 440.5 11 13.20 8.80 22.00 69.14 

22 4 125.0 136.0 261.0 6 1.60 1.82 3.42 438.0 5.5 443.5 12 17.35 7.13 24.48 121.73 

23 4 77 107.5 184.5 5 0.10 0.21 0.31 341.5 0.0 341.5 15 0.45 0.07 0.52 51.96 

24 4 24.0 56.5 80.5 3 0.32 4.39 4.71 490.5 17.5 508.0 21 12.60 3.11 15.71 103.84 

25 5 317.5 242.5 560.0 21 4.26 3.57 7.83 144.5 34.0 178.5 8 0.55 0.00 0.55 55.17 

26 5 90.0 62.0 152.0 5 0.69 0.89 1.58 231.0 66.5 297.5 10 0.00 0.00 ns 62.90 

27 5 342.0 421.0 763.0 14 5.48 4.06 9.54 360.5 0.0 360.5 10 8.83 4.41 13.24 87.85 

28 5 121.5 86.0 207.5 6 5.75 2.30 8.05 275.5 26.5 302.0 9 1.17 0.00 1.17 42.46 

29 5 443.5 97.5 541.0 12 5.23 2.19 7.42 238.0 27.0 265.0 7 6.07 1.32 7.39 87.01 

30 5 120.5 148.5 269.0 8 0.62 3.78 4.40 343.0 19.5 362.5 13 1.66 0.00 1.66 95.88 

31 6 74.0 146.5 220.5 5 1.84 0.00 1.84 260.0 0.0 260.0 11 7.02 2.32 9.34 69.06 

32 6 43.5 41.0 84.5 2 0.69 0.50 1.19 481.5 28.0 509.5 15 15.17 3.80 18.97 94.41 

33 6 526.0 236.0 762.0 17 5.84 5.49 11.33 606.0 74.0 680.0 17 11.38 4.38 15.76 91.61 

34 6 493.0 273.0 766.0 21 3.89 2.05 5.94 397.0 53.0 450.0 11 6.63 1.74 8.37 56.31 

35 6 291.0 313.5 604.5 24 3.49 5.64 9.13 503.5 5.5 509.0 19 10.53 2.02 12.55 95.14 

36 6 96.0 155.0 251.0 6 1.78 0.68 2.46 610.0 7.5 617.5 16 16.45 3.43 19.88 175.00 

 Appendix H (cont‟d). Demographics of Spartina alterniflora and Juncus roemerianus co-planted in pots in multi-level marsh 

planter at Lola, NC in September 2007 (each pot = 0.01818 m
2
) [ns = no sample] 
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Appendix I.  Demographics of Spartina alterniflora and Juncus roemerianus individually-planted in pots in multi-level marsh 

planter at Pine Knoll Shores, NC in September 2007 (each pot = 0.01818 m
2
) [ns = no sample] 
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1 1                 0.0 12.0 12.0 4 4 0.00 0.14 0.14 34.19 

2 1                 0.0 9.0 9.0 2 2 0.00 0.09 0.09 32.03 

3 1                     ns           12.79 

4 1 0.0 96.0 96.0 12 0.00 2.24 2.24 45.87                   

5 1 0.0 187.0 187.0 19 0.00 8.15 8.15 54.05                   

6 1 0.0 262.5 262.5 22 0.00 10.60 10.60 26.77                   

7 2                 0.0 5.0 5.0 1 1 0.00 0.15 0.15 25.69 

8 2                 0.0 12.0 12.0 1 1 0.00 0.10 0.10 23.88 

9 2                 0.0 0.0 0.0 0 0 0.00 0.05 0.05 8.71 

10 2     ns                             

11 2 0.0 62.0 62.0 6 0.00 2.22 2.22 66.51                   

12 2     ns                             

13 3                 61.0 5.5 66.5 13 3 1.00 0.09 1.09 59.71 

14 3                                 43.41 

15 3                 62.0 0.0 62.0 9 2 1.42 0.00 1.42 35.73 

16 3 0.0 106.0 106.0 5 0.00 7.48 7.48 58.91                   

17 3 0.0 35.0 35.0 2 0.00 2.60 2.60 14.48                   

18 3 0.0 26.5 26.5 4 0.00 2.54 2.54 18.97 0.0 0.0 0.0 0 0 0.00 0.00 0.00   
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Appendix I (cont‟d).  Demographics of Spartina alterniflora and Juncus roemerianus individually-planted in pots in multi-

level marsh planter at Pine Knoll Shores, NC in September 2007 (each pot = 0.01818 m
2
) [ns = no sample] 
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19 4                 250.5 3.0 253.5 60 11 4.27 0.92 5.19 63.07 

20 4                 255.5 0.0 255.5 50 11 4.15 1.30 5.45 90.67 

21 4                 262.0 7.5 269.5 55 12 4.95 0.84 5.79 77.96 

22 4 0.0 0.0 0.0 0 0.00 4.27 4.27 89.68                   

23 4 0 177.0 177 10 0.00 6.60 6.60 68.44                   

24 4 0.0 95.5 95.5 7 0.00 3.66 3.66 22.97                   

25 5                 127.5 11.0 138.5 54 11 2.11 0.11 2.22 75.77 

26 5                 122.5 85.5 208.0 45 12 1.57 1.50 3.07 47.35 

27 5                 402.5 108.5 511.0 97 19 12.19 1.68 13.87 56.31 

28 5 0.0 253.5 253.5 11 0.00 7.85 7.85 42.92                   

29 5 0.0 739.5 739.5 23 0.00 18.74 18.74 43.97                   

30 5 0.0 97.5 97.5 9 0.00 2.47 2.47 28.34                   

31 6                 193.5 178.5 372.0 64 17 7.23 5.01 12.24 58.49 

32 6                 215.5 51.0 266.5 79 17 4.35 0.94 5.29 59.86 

33 6                 168.0 4.5 172.5 49 9 2.78 0.56 3.34 101.77 

34 6 0.0 361.5 361.5 11 0.00 13.03 13.03 55.66                   

35 6 0.0 912.0 912.0 19 0.00 19.98 19.98 45.70                   

36 6 12.0 661.0 673.0 28 0.17 21.62 21.79 31.40                   
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Appendix J.  Relationship between elevation (relative to mean sea level) and inundation 

period at PKS (astronomically-dominated regime) and LOLA (meteorologically-

dominated regime) and peak production ranges for S. alterniflora and J. 

roemerianus 
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Appendix K. Dominant cover within cells of control (C) and disturbed (clipped) (D) paired platform plots at Pine Knoll 

Shores, NC prior to treatment (May 2007) 

 

              

   

Plot # Treatment   Juncus side Spartina side 

# cells dominated 

by:   Juncus Spartina 

Other 

spp.  Bare Juncus Spartina 

Other 

spp.  Bare wrack 

1 C   92 0 0 8 0 99 0 1   

2 D   100 0 0 0 0 77 0 13   

3 C   98 2 0 0 0 74 0 4 24 

4 D   93 0 0 7 3 96 0 1   

5 C   93 4 0 3 3 88 0 9   

6 D   98 0 0 2 3 92 0 5   

7 C   77 0 0 13 3 94 0 3   

8 D   98 1 0 1 0 92 0 8   
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Appendix L. Dominant cover within cells of control (C) and disturbed (clipped) (D) paired platform plots at Pine Knoll Shores, 

NC at 2 months post treatment (July 2007) 

 

Plot # Treatment   Juncus side Spartina side 

# cells dominated 

by:   Juncus Spartina 

Other 

spp.  Bare wrack Juncus Spartina 

Other 

spp.  Bare wrack 

1 C   88 0 0 12   1 85 0 14   

2 D   66 1 0 43   5 80 0 15   

3 C   100 0 0 0   0 95 0 3 2 

4 D   59 9 0 32   0 56 0 44   

5 C   97 3 0 0   3 95 0 2   

6 D   70 5 0 25   3 54 0 43   

7 C   95 0 0 5   0 96 0 4   

8 D   100 0 0 0   1 14 0 85   
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Appendix M. Dominant cover within cells of control (C) and disturbed (clipped) (D) paired platform plots at Pine Knoll 

Shores, NC at 12 months post treatment (June 2008) 

 

Plot # Treatment   Juncus side Spartina side 

# cells dominated 

by:   Juncus Spartina 

Other 

spp.  Bare wrack Juncus Spartina 

Other 

spp.  Bare wrack 

1 C   96 0 0 4   0 94 0 6   

2 D   28 38 0 34   0 98 0 2   

3 C   100 0 0 0   5 37 0 0 58 

4 D   37 27 0 36   4 91 0 5   

5 C   100 0 0 0   5 91 0 4   

6 D   52 39 0 9   1 80 0 19   

7 C   80 0 0 20   17 71 0 12   

8 D   0 23 0 77   0 84 0 16   
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Appendix N. Dominant cover within cells of control (C) and disturbed (clipped) (D) paired platform plots at Pine Knoll 

Shores, NC at 16 months post treatment (October 2008) 

 

Plot # Treatment   Juncus side Spartina side 

# cells dominated 

by:   Juncus Spartina 

Other 

spp.  Bare Juncus Spartina 

Other 

spp.  Bare 

1 C   89 1 0 10 2 93 0 5 

2 D   41 40 0 19 0 96 0 4 

3 C   100 0 0 0 6 94 0 0 

4 D   37 35 0 28 3 93 0 4 

5 C   100 0 0 0 0 100 0 0 

6 D   35 57 0 8 2 91 0 7 

7 C   86 0 0 14 17 66 0 17 

8 D   0 78 0 22 0 90 0 10 
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Appendix O. Dominant cover within cells of control (C) and disturbed (clipped) (D) paired platform plots in burnt (B) and 

unburnt (U) areas at Lola, NC prior to treatment (May 2007) 

 

Plot # Treatment   Juncus side Spartina side 

# cells dominated 

by: 

Unburnt/ 

Burnt Juncus Spartina 

Other 

spp.  Bare Juncus Spartina 

Other 

spp.  Bare 

1 C B 59 1 23 17 0 88 12 9 

2 D B 48 4 27 21 1 93 3 3 

3 C B 77 0 6 17 0 99 1 0 

4 D B 85 5 4 6 0 94 3 3 

5 C U 100 0 0 0 0 100 0 0 

6 D U 100 0 0 0 0 100 0 0 

7 C U 100 0 0 0 0 100 0 0 

8 D U 95 5 0 0 0 97 0 3 

9 C B 90 3 3 4 0 100 0 0 

10 D B 81 6 12 1 0 100 0 0 

11 C B 94 0 1 4 0 98 1 1 

12 D B 94 1 0 5 0 99 0 1 

13 C U 100 0 0 0 0 100 0 0 

14 D U 98 2 0 0 0 100 0 0 

15 C U 100 0 0 0 0 99 0 1 

16 D U 100 0 0 0 0 98 0 2 
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Appendix P. Dominant cover within cells of control (C) and disturbed (clipped) (D) paired platform plots in burnt (B) and 

unburnt (U) areas at Lola, NC at 2 months post treatment (July 2007) 

 

Plot # Treatment   Juncus side Spartina side 

# cells dominated 

by: 

Unburnt/ 

Burnt Juncus Spartina 

Other 

spp.  Bare wrack Juncus Spartina 

Other 

spp.  Bare wrack 

1 C B 61 9 14 16   0 98 2 0   

2 D B 48 5 5 42   1 95 1 3   

3 C B 89 1 3 7   0 100 0 0   

4 D B 77 7 1 15   0 95 1 4   

5 C U 100 0 0 0   0 100 0 0   

6 D U 77 9 0 12 2 0 96 1 3   

7 C U 100 0 0 0   0 91 0 4 5 

8 D U 84 1 0 15   2 81 1 16   

9 C B 88 6 5 1   0 100 0 0   

10 D B 80 0 5 15   0 100 0 0   

11 C B 81 2 15 2   0 99 1 0   

12 D B 75 2 0 23   0 100 0 0   

13 C U 100 0 0 0   0 100 0 0   

14 D U 74 3 0 13   0 100 0 0   

15 C U 100 0 0 0   0 98 0 2   

16 D U 78 0 0 22   0 87 0 13   
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Appendix Q. Dominant cover within cells of control (C) and disturbed (clipped) (D) paired platform plots in burnt (B) and 

unburnt (U) areas at Lola, NC at 12 months post treatment (June 2008) 

 

Plot # Treatment   Juncus side   Spartina side 

# cells dominated 

by: 

Unburnt/ 

Burnt Juncus Spartina 

Other 

spp.  Bare wrack Juncus Spartina 

Other 

spp.  Bare wrack 

1 C B 71 1 28 0 0 3 70 27 0 0 

2 D B 0 100 0 0 0 0 100 0 0 0 

3 C B 100 0 0 0 0 0 100 0 0 0 

4 D B 88 21 1 0 0 0 100 0 0 0 

5 C U 95 0 0 1 4 0 100 0 0 0 

6 D U 72 18 0 0 10 0 100 0 0 0 

7 C U 89 0 0 11 0 0 93 0 0 7 

8 D U 64 0 8 0 28 0 78 0 2 10 

9 C B 100 0 0 0 0 0 100 0 0 0 

10 D B 45 29 15 9 0 0 100 0 0 0 

11 C B 100 0 0 0 0 0 98 2 0 0 

12 D B 77 19 0 4 0 0 100 0 0 0 

13 C U 100 0 0 0 0 0 100 0 0 0 

14 D U 94 6 0 0 0 0 100 0 0 0 

15 C U 96 0 0 4 0 0 99 0 0 1 

16 D U 81 19 0 0 0 0 98 0 0 2 

 

  



 251 

 

Appendix R. Dominant cover within cells of control (C) and disturbed (clipped) (D) paired platform plots in burnt (B) and 

unburnt (U) areas at Lola, NC at 16 months post treatment (October 2008) 

 

Plot # Treatment   Juncus side Spartina side 

# cells dominated 

by: 

Unburnt/ 

Burnt Juncus Spartina 

Other 

spp.  Bare Juncus Spartina 

Other 

spp.  Bare 

1 C B 78 3 3 16 9 16 62 13 

2 D B 82 13 1 4 6 72 19 3 

3 C B 100 0 0 0 2 97 1 0 

4 D B 93 4 3 0 0 97 3 0 

5 C U 96 0 0 7 5 95 0 0 

6 D U 87 13 0 0 0 100 0 0 

7 C U 100 0 0 0 0 100 0 0 

8 D U 100 0 0 0 2 96 1 1 

9 C B 99 1 0 0 7 93 0 0 

10 D B 82 11 4 3 0 89 11 0 

11 C B 99 1 0 0 9 87 4 0 

12 D B 97 3 0 0 0 100 0 0 

13 C U 100 0 0 0 0 93 3 4 

14 D U 95 5 0 0 2 95 1 2 

15 C U 100 0 0 0 0 100 0 0 

16 D U 64 24 3 9 0 100 0 0 
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